基于进化粒子群算法的自主移动机器人导航路径规划

Ittikon Thammachantuek, M. Ketcham
{"title":"基于进化粒子群算法的自主移动机器人导航路径规划","authors":"Ittikon Thammachantuek, M. Ketcham","doi":"10.1109/RI2C48728.2019.8999920","DOIUrl":null,"url":null,"abstract":"In this article, we proposed a new path planner called EPSO path planner. It based on evolutionary particle swarm optimization to generating the collision-free path for a mobile robot. The proposed algorithm finds the optimal path by performing random sampling on grid based environment. The efficiency of the proposed algorithm is demonstrated by simulation. The shortest path obtained was 11.45.","PeriodicalId":404700,"journal":{"name":"2019 Research, Invention, and Innovation Congress (RI2C)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Path Planning for Autonomous Mobile Robot Navigation with Evolutionary Particle Swarm Optimization\",\"authors\":\"Ittikon Thammachantuek, M. Ketcham\",\"doi\":\"10.1109/RI2C48728.2019.8999920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we proposed a new path planner called EPSO path planner. It based on evolutionary particle swarm optimization to generating the collision-free path for a mobile robot. The proposed algorithm finds the optimal path by performing random sampling on grid based environment. The efficiency of the proposed algorithm is demonstrated by simulation. The shortest path obtained was 11.45.\",\"PeriodicalId\":404700,\"journal\":{\"name\":\"2019 Research, Invention, and Innovation Congress (RI2C)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Research, Invention, and Innovation Congress (RI2C)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RI2C48728.2019.8999920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Research, Invention, and Innovation Congress (RI2C)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RI2C48728.2019.8999920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的路径规划器——EPSO路径规划器。基于进化粒子群算法生成移动机器人的无碰撞路径。该算法通过对网格环境进行随机采样来寻找最优路径。仿真结果验证了该算法的有效性。得到的最短路径为11.45。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Path Planning for Autonomous Mobile Robot Navigation with Evolutionary Particle Swarm Optimization
In this article, we proposed a new path planner called EPSO path planner. It based on evolutionary particle swarm optimization to generating the collision-free path for a mobile robot. The proposed algorithm finds the optimal path by performing random sampling on grid based environment. The efficiency of the proposed algorithm is demonstrated by simulation. The shortest path obtained was 11.45.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Understanding Key Enablers of Cloud Computing Adoption and Acceptance Over Time Development Process of Student Seats on Modified Pickup for School Transportation D-STATCOM based Voltage Compensator for a new Micro Hydro Power Generation Scheme Supplying Remote Areas An Active-only Grounded Capacitance Simulator Interface Circuit for Three-Wire Resistance Temperature Detector with Lead Wire Resistance Compensation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1