移动智能体中的机会合作神经学习

Yanli Yang, M. Polycarpou, A. Minai
{"title":"移动智能体中的机会合作神经学习","authors":"Yanli Yang, M. Polycarpou, A. Minai","doi":"10.1109/IJCNN.2002.1007560","DOIUrl":null,"url":null,"abstract":"Searching a spatially extended environment using autonomous mobile agents is a problem that arises in many applications, e.g., search-and-rescue, search-and-destroy, intelligence gathering, surveillance, disaster response, exploration, etc. Since agents such as UAV's are often energy-limited and operate in a hostile environment, there is a premium on efficient cooperative search without superfluous communication. In this paper, we consider how a group of mobile agents, using only limited messages and incomplete information, can learn to search an environment efficiently. In particular, we consider the issue of centralized vs. decentralized intelligence and the effect of opportunistic sharing of learned information on search performance.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Opportunistically cooperative neural learning in mobile agents\",\"authors\":\"Yanli Yang, M. Polycarpou, A. Minai\",\"doi\":\"10.1109/IJCNN.2002.1007560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Searching a spatially extended environment using autonomous mobile agents is a problem that arises in many applications, e.g., search-and-rescue, search-and-destroy, intelligence gathering, surveillance, disaster response, exploration, etc. Since agents such as UAV's are often energy-limited and operate in a hostile environment, there is a premium on efficient cooperative search without superfluous communication. In this paper, we consider how a group of mobile agents, using only limited messages and incomplete information, can learn to search an environment efficiently. In particular, we consider the issue of centralized vs. decentralized intelligence and the effect of opportunistic sharing of learned information on search performance.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

使用自主移动代理搜索空间扩展环境是在许多应用中出现的问题,例如搜索与救援、搜索与破坏、情报收集、监视、灾难响应、探索等。由于像无人机这样的智能体通常是能量有限的,并且在恶劣的环境中运行,因此在没有多余通信的情况下进行高效的合作搜索是非常重要的。在本文中,我们考虑了一组移动代理如何使用有限的消息和不完整的信息来学习有效地搜索环境。特别地,我们考虑了集中与分散智能的问题,以及学习信息的机会共享对搜索性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opportunistically cooperative neural learning in mobile agents
Searching a spatially extended environment using autonomous mobile agents is a problem that arises in many applications, e.g., search-and-rescue, search-and-destroy, intelligence gathering, surveillance, disaster response, exploration, etc. Since agents such as UAV's are often energy-limited and operate in a hostile environment, there is a premium on efficient cooperative search without superfluous communication. In this paper, we consider how a group of mobile agents, using only limited messages and incomplete information, can learn to search an environment efficiently. In particular, we consider the issue of centralized vs. decentralized intelligence and the effect of opportunistic sharing of learned information on search performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CMAC-based fault diagnosis of power transformers Shape, orientation and size recognition of normal and ambiguous faces by a rotation and size spreading associative neural network Neuronal signal processing in Parkinson's disease Blind signal separation via simultaneous perturbation method Numerical solution of differential equations by radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1