结合KPCA和粒子群算法进行模式去噪

Jianwu Li, Lu Su
{"title":"结合KPCA和粒子群算法进行模式去噪","authors":"Jianwu Li, Lu Su","doi":"10.1109/CCPR.2008.10","DOIUrl":null,"url":null,"abstract":"KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Combining KPCA and PSO for Pattern Denoising\",\"authors\":\"Jianwu Li, Lu Su\",\"doi\":\"10.1109/CCPR.2008.10\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.10\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

讨论了基于KPCA的模式去噪问题。该方法基于机器学习,通过核函数将输入空间中的非线性模式映射到高维特征空间中,然后在特征空间中进行主成分分析,实现模式去噪。该方法的关键难点是在特征空间去噪后,在输入空间中寻找与模式相对应的预图像或近似预图像。本文提出利用粒子群优化算法在输入空间中寻找预图像。从预图像中选择一些最接近的训练模式作为PSO的初始组,然后PSO算法进行迭代过程来寻找预图像或最佳近似预图像。基于USPS数据集的实验结果表明,该方法优于传统方法。此外,基于pso的方法易于理解,也易于实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining KPCA and PSO for Pattern Denoising
KPCA based pattern denoising has been addressed. This method, based on machine learning, maps nonlinearly patterns in input space into a higher-dimensional feature space by kernel functions, then performs PCA in feature space to realize pattern denoising. The key difficulty for this method is to seek the pre-image or an approximate pre-image in input space corresponding to the pattern after denoising in feature space. This paper proposes to utilize particle swarm optimization (PSO) algorithms to find pre-images in input space. Some nearest training patterns from the pre-image are selected as the initial group of PSO, then PSO algorithm performs an iterative process to find the pre-image or a best approximate pre-image. Experimental results based on the USPS dataset show that our proposed method outperforms some traditional techniques. Additionally, the PSO-based method is straightforward to understand, and is also easy to realize.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1