用于识别心跳的级联分类器方法

A. Naranjo, P. A. M. Gutierrez
{"title":"用于识别心跳的级联分类器方法","authors":"A. Naranjo, P. A. M. Gutierrez","doi":"10.1109/STSIVA.2012.6340550","DOIUrl":null,"url":null,"abstract":"This work describes the using of cascaded classifiers to identify heart-beat patterns. These patterns belong to classes no considered during training. We employed supervised learning machines such as support vector machines (SVM) and multilayer perceptron (MLP). The cascaded classifiers were validated with 5 different kinds of heart-beats. The discrete wavelet transform (DWT) was used for feature extraction. For each decomposition level, only the 4 largest coefficients were taken from approximations and details. The DWT uses 6 decomposition levels and Daubechies-4 mother wavelet. The achieved classification error was 3,55%.","PeriodicalId":383297,"journal":{"name":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approach to cascade classifiers for identifying heart-beats\",\"authors\":\"A. Naranjo, P. A. M. Gutierrez\",\"doi\":\"10.1109/STSIVA.2012.6340550\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work describes the using of cascaded classifiers to identify heart-beat patterns. These patterns belong to classes no considered during training. We employed supervised learning machines such as support vector machines (SVM) and multilayer perceptron (MLP). The cascaded classifiers were validated with 5 different kinds of heart-beats. The discrete wavelet transform (DWT) was used for feature extraction. For each decomposition level, only the 4 largest coefficients were taken from approximations and details. The DWT uses 6 decomposition levels and Daubechies-4 mother wavelet. The achieved classification error was 3,55%.\",\"PeriodicalId\":383297,\"journal\":{\"name\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STSIVA.2012.6340550\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 XVII Symposium of Image, Signal Processing, and Artificial Vision (STSIVA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2012.6340550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作描述了使用级联分类器来识别心跳模式。这些模式属于训练中不考虑的类。我们使用了监督学习机,如支持向量机(SVM)和多层感知机(MLP)。用5种不同的心跳对级联分类器进行了验证。采用离散小波变换(DWT)进行特征提取。对于每个分解层次,仅从近似值和细节中取最大的4个系数。DWT使用6个分解层次和Daubechies-4母小波。实现的分类误差为3.55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Approach to cascade classifiers for identifying heart-beats
This work describes the using of cascaded classifiers to identify heart-beat patterns. These patterns belong to classes no considered during training. We employed supervised learning machines such as support vector machines (SVM) and multilayer perceptron (MLP). The cascaded classifiers were validated with 5 different kinds of heart-beats. The discrete wavelet transform (DWT) was used for feature extraction. For each decomposition level, only the 4 largest coefficients were taken from approximations and details. The DWT uses 6 decomposition levels and Daubechies-4 mother wavelet. The achieved classification error was 3,55%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constrained affinity matrix for spectral clustering: A basic semi-supervised extension Path planning applied to the mobile robot GBot Influence of structural similarities between sequences over ontology annotation proteins using BLASTP Technical analog-digital for segmentation of spectral images acquired with an accousto-optic system Development of a segmentation algorithm for ECG signals, simultaneously applying continuous and discrete wavelet transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1