Afraa Obaid Mubarak AlMehairi, S. Ramesh, Amber Childs-Santos, Ali Hillal-Alnaqbi, Ibeawuchi Anokam, F. Alnaimat, J. Buie, B. Mathew
{"title":"基于尺寸的微颗粒分离介电泳微流体装置:可行性研究","authors":"Afraa Obaid Mubarak AlMehairi, S. Ramesh, Amber Childs-Santos, Ali Hillal-Alnaqbi, Ibeawuchi Anokam, F. Alnaimat, J. Buie, B. Mathew","doi":"10.1109/MARSS.2018.8481185","DOIUrl":null,"url":null,"abstract":"This document presents the model-based feasibility study of a dielectrophoresis based microfluidic device for purposes of label-free separation of same microparticles of different diameters. The microfluidic device consists of two sections - focusing and separation section. The focusing section has two a set of interdigitated transducer electrodes located next to each of the sidewalls. The focusing section subjects all microparticles to negative-dielectrophoresis and focuses the micro-scale entities at the middle of the microchannel. The separation section is downstream of the focusing section and has just one set of interdigitated transducer electrodes. This section subjects one type of microparticle to positive-dielectrophoresis and the other type of microparticle to negative-dielectrophoresis leading to different lateral displacements leading to achieve separation. For purposes of demonstration, a heterogeneous mixture of polystyrene microparticles (5 μm and 10 μm), suspended in water, is separated into two homogeneous samples.","PeriodicalId":118389,"journal":{"name":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dielectrophoretic Microfluidic Device for Size-Based Separation of Microparticles: Feasibility Study\",\"authors\":\"Afraa Obaid Mubarak AlMehairi, S. Ramesh, Amber Childs-Santos, Ali Hillal-Alnaqbi, Ibeawuchi Anokam, F. Alnaimat, J. Buie, B. Mathew\",\"doi\":\"10.1109/MARSS.2018.8481185\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This document presents the model-based feasibility study of a dielectrophoresis based microfluidic device for purposes of label-free separation of same microparticles of different diameters. The microfluidic device consists of two sections - focusing and separation section. The focusing section has two a set of interdigitated transducer electrodes located next to each of the sidewalls. The focusing section subjects all microparticles to negative-dielectrophoresis and focuses the micro-scale entities at the middle of the microchannel. The separation section is downstream of the focusing section and has just one set of interdigitated transducer electrodes. This section subjects one type of microparticle to positive-dielectrophoresis and the other type of microparticle to negative-dielectrophoresis leading to different lateral displacements leading to achieve separation. For purposes of demonstration, a heterogeneous mixture of polystyrene microparticles (5 μm and 10 μm), suspended in water, is separated into two homogeneous samples.\",\"PeriodicalId\":118389,\"journal\":{\"name\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MARSS.2018.8481185\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS.2018.8481185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dielectrophoretic Microfluidic Device for Size-Based Separation of Microparticles: Feasibility Study
This document presents the model-based feasibility study of a dielectrophoresis based microfluidic device for purposes of label-free separation of same microparticles of different diameters. The microfluidic device consists of two sections - focusing and separation section. The focusing section has two a set of interdigitated transducer electrodes located next to each of the sidewalls. The focusing section subjects all microparticles to negative-dielectrophoresis and focuses the micro-scale entities at the middle of the microchannel. The separation section is downstream of the focusing section and has just one set of interdigitated transducer electrodes. This section subjects one type of microparticle to positive-dielectrophoresis and the other type of microparticle to negative-dielectrophoresis leading to different lateral displacements leading to achieve separation. For purposes of demonstration, a heterogeneous mixture of polystyrene microparticles (5 μm and 10 μm), suspended in water, is separated into two homogeneous samples.