基于进化算法和约束聚类的多模态分类

T. Covões, Eduardo R. Hruschka
{"title":"基于进化算法和约束聚类的多模态分类","authors":"T. Covões, Eduardo R. Hruschka","doi":"10.1109/CEC.2018.8477858","DOIUrl":null,"url":null,"abstract":"Constrained clustering has been an active research topic in the last decade. Among the different kinds of constraints, must-link and cannot-link are the most adopted ones. However, most algorithms assume that the number of clusters are known a priori. Besides this usually unrealistic assumption, one often ignores the fact that must-link constraints may correspond to objects in different density regions of the input space, thereby requiring a more complex structure to represent the underlying concept. Aimed at overcoming these limitations, we present the Feasible-Infeasible Evolutionary Create & Eliminate for Expectation Maximization (FIECE-EM), which identifies a Gaussian Mixture Model that is a good fit for the data, while meeting the constraints provided. We compare FIECE-EM with a state-of-the-art algorithm. Our results indicate that FIECE-EM obtains competitive results, without the need for fine-tuning a tradeoff parameter as in the state-of-the-art algorithm under comparison.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Classification with Multi-Modal Classes Using Evolutionary Algorithms and Constrained Clustering\",\"authors\":\"T. Covões, Eduardo R. Hruschka\",\"doi\":\"10.1109/CEC.2018.8477858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Constrained clustering has been an active research topic in the last decade. Among the different kinds of constraints, must-link and cannot-link are the most adopted ones. However, most algorithms assume that the number of clusters are known a priori. Besides this usually unrealistic assumption, one often ignores the fact that must-link constraints may correspond to objects in different density regions of the input space, thereby requiring a more complex structure to represent the underlying concept. Aimed at overcoming these limitations, we present the Feasible-Infeasible Evolutionary Create & Eliminate for Expectation Maximization (FIECE-EM), which identifies a Gaussian Mixture Model that is a good fit for the data, while meeting the constraints provided. We compare FIECE-EM with a state-of-the-art algorithm. Our results indicate that FIECE-EM obtains competitive results, without the need for fine-tuning a tradeoff parameter as in the state-of-the-art algorithm under comparison.\",\"PeriodicalId\":212677,\"journal\":{\"name\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2018.8477858\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

约束聚类是近十年来一个活跃的研究课题。在不同类型的约束中,必须链接和不能链接是最常用的约束。然而,大多数算法都假定集群的数量是已知的。除了这个通常不切实际的假设之外,人们常常忽略了一个事实,即必须链接约束可能对应于输入空间中不同密度区域中的对象,因此需要更复杂的结构来表示潜在的概念。为了克服这些限制,我们提出了可行-不可行的期望最大化进化创建和消除(FIECE-EM),它识别了一个高斯混合模型,该模型很好地适合数据,同时满足所提供的约束。我们将FIECE-EM与最先进的算法进行比较。我们的研究结果表明,FIECE-EM获得了具有竞争力的结果,而不需要像比较中最先进的算法那样对权衡参数进行微调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification with Multi-Modal Classes Using Evolutionary Algorithms and Constrained Clustering
Constrained clustering has been an active research topic in the last decade. Among the different kinds of constraints, must-link and cannot-link are the most adopted ones. However, most algorithms assume that the number of clusters are known a priori. Besides this usually unrealistic assumption, one often ignores the fact that must-link constraints may correspond to objects in different density regions of the input space, thereby requiring a more complex structure to represent the underlying concept. Aimed at overcoming these limitations, we present the Feasible-Infeasible Evolutionary Create & Eliminate for Expectation Maximization (FIECE-EM), which identifies a Gaussian Mixture Model that is a good fit for the data, while meeting the constraints provided. We compare FIECE-EM with a state-of-the-art algorithm. Our results indicate that FIECE-EM obtains competitive results, without the need for fine-tuning a tradeoff parameter as in the state-of-the-art algorithm under comparison.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Evolution of AutoEncoders for Compressed Representations Landscape-Based Differential Evolution for Constrained Optimization Problems A Novel Approach for Optimizing Ensemble Components in Rainfall Prediction A Many-Objective Evolutionary Algorithm with Fast Clustering and Reference Point Redistribution Manyobjective Optimization to Design Physical Topology of Optical Networks with Undefined Node Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1