机器人约束面的结构设计与刚度分析

Junpeng Shao, Yuanfeng Gao, Bing-Tuan Gao
{"title":"机器人约束面的结构设计与刚度分析","authors":"Junpeng Shao, Yuanfeng Gao, Bing-Tuan Gao","doi":"10.1109/ICMA.2016.7558533","DOIUrl":null,"url":null,"abstract":"In order to avoid unnecessary costs of the design process, we need to design a leg and debug it in advance. It always allows us to determine that whether the design is reasonable. In this dissertation, aiming at the single leg supporting problem of hydraulic quadruped robot in the process of debugging, we design a robot bound planes with guide rails. The robot bound plane is designed by 3D drawing software UG. Based on the theory of finite element analysis, we analyze the stiffness of the robot by using the specialized analysis software ANSYS. And then the unreasonable place of preliminary design of the robot bound planes is amended and improved. Rectangle steel is installed between two steel stringers. It not only improves the strength, but also improves stiffness of the structure, so as to meet the design requirements. Proved by the simulation and experiments, the robot bound planes can meet the design requirements of the standard, it can ensure the smooth progress of hydraulic quadruped robot legs debugging.","PeriodicalId":260197,"journal":{"name":"2016 IEEE International Conference on Mechatronics and Automation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Structural design and stiffness analysis of the robot bound planes\",\"authors\":\"Junpeng Shao, Yuanfeng Gao, Bing-Tuan Gao\",\"doi\":\"10.1109/ICMA.2016.7558533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to avoid unnecessary costs of the design process, we need to design a leg and debug it in advance. It always allows us to determine that whether the design is reasonable. In this dissertation, aiming at the single leg supporting problem of hydraulic quadruped robot in the process of debugging, we design a robot bound planes with guide rails. The robot bound plane is designed by 3D drawing software UG. Based on the theory of finite element analysis, we analyze the stiffness of the robot by using the specialized analysis software ANSYS. And then the unreasonable place of preliminary design of the robot bound planes is amended and improved. Rectangle steel is installed between two steel stringers. It not only improves the strength, but also improves stiffness of the structure, so as to meet the design requirements. Proved by the simulation and experiments, the robot bound planes can meet the design requirements of the standard, it can ensure the smooth progress of hydraulic quadruped robot legs debugging.\",\"PeriodicalId\":260197,\"journal\":{\"name\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Conference on Mechatronics and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMA.2016.7558533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Mechatronics and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMA.2016.7558533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了避免设计过程中不必要的成本,我们需要提前设计一条腿并进行调试。它总能让我们确定设计是否合理。本文针对液压四足机器人在调试过程中存在的单腿支撑问题,设计了一种带导轨的机器人绑定平面。利用三维绘图软件UG设计机器人的束缚面。基于有限元分析理论,利用专业分析软件ANSYS对机器人的刚度进行了分析。然后对机器人边界平面初步设计中不合理的地方进行了修正和改进。矩形钢安装在两根钢桁之间。既提高了强度,又提高了结构的刚度,从而达到设计要求。通过仿真和实验证明,机器人的束缚面能够满足设计标准的要求,能够保证液压四足机器人腿调试的顺利进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Structural design and stiffness analysis of the robot bound planes
In order to avoid unnecessary costs of the design process, we need to design a leg and debug it in advance. It always allows us to determine that whether the design is reasonable. In this dissertation, aiming at the single leg supporting problem of hydraulic quadruped robot in the process of debugging, we design a robot bound planes with guide rails. The robot bound plane is designed by 3D drawing software UG. Based on the theory of finite element analysis, we analyze the stiffness of the robot by using the specialized analysis software ANSYS. And then the unreasonable place of preliminary design of the robot bound planes is amended and improved. Rectangle steel is installed between two steel stringers. It not only improves the strength, but also improves stiffness of the structure, so as to meet the design requirements. Proved by the simulation and experiments, the robot bound planes can meet the design requirements of the standard, it can ensure the smooth progress of hydraulic quadruped robot legs debugging.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic lane tracking system based on multi-model fuzzy controller Automatic path and trajectory planning for laser cladding robot based on CAD Analysis of dynamic characteristics of rugged vessel in the process of hepatic perfusion A simulation method for X-ray pulsar signal based on Monte Carlo Study of audiovisual asynchrony signal processing: Robot recognition system of different ages
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1