一种用于比较插图风格的无监督方法

T. Furuya, Shigeru Kuriyama, Ryutarou Ohbuchi
{"title":"一种用于比较插图风格的无监督方法","authors":"T. Furuya, Shigeru Kuriyama, Ryutarou Ohbuchi","doi":"10.1109/CBMI.2015.7153615","DOIUrl":null,"url":null,"abstract":"In creating web pages, books, or presentation slides, consistent use of tasteful visual style(s) is quite important. In this paper, we consider the problem of style-based comparison and retrieval of illustrations. In their pioneering work, Garces et al. [2] proposed an algorithm for comparing illustrative style. The algorithm uses supervised learning that relied on stylistic labels present in a training dataset. In reality, obtaining such labels is quite difficult. In this paper, we propose an unsupervised approach to achieve accurate and efficient stylistic comparison among illustrations. The proposed algorithm combines heterogeneous local visual features extracted densely. These features are aggregated into a feature vector per illustration prior to be treated with distance metric learning based on unsupervised dimension reduction for saliency and compactness. Experimental evaluation of the proposed method by using multiple benchmark datasets indicates that the proposed method outperforms existing approaches.","PeriodicalId":387496,"journal":{"name":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"An unsupervised approach for comparing styles of illustrations\",\"authors\":\"T. Furuya, Shigeru Kuriyama, Ryutarou Ohbuchi\",\"doi\":\"10.1109/CBMI.2015.7153615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In creating web pages, books, or presentation slides, consistent use of tasteful visual style(s) is quite important. In this paper, we consider the problem of style-based comparison and retrieval of illustrations. In their pioneering work, Garces et al. [2] proposed an algorithm for comparing illustrative style. The algorithm uses supervised learning that relied on stylistic labels present in a training dataset. In reality, obtaining such labels is quite difficult. In this paper, we propose an unsupervised approach to achieve accurate and efficient stylistic comparison among illustrations. The proposed algorithm combines heterogeneous local visual features extracted densely. These features are aggregated into a feature vector per illustration prior to be treated with distance metric learning based on unsupervised dimension reduction for saliency and compactness. Experimental evaluation of the proposed method by using multiple benchmark datasets indicates that the proposed method outperforms existing approaches.\",\"PeriodicalId\":387496,\"journal\":{\"name\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CBMI.2015.7153615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 13th International Workshop on Content-Based Multimedia Indexing (CBMI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMI.2015.7153615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在创建网页、书籍或演示幻灯片时,始终如一地使用有品位的视觉风格是非常重要的。在本文中,我们考虑了基于风格的插图比较和检索问题。Garces等人在他们的开创性工作中提出了一种比较插图风格的算法。该算法使用监督学习,依赖于训练数据集中存在的风格标签。实际上,获得这样的标签是相当困难的。在本文中,我们提出了一种无监督的方法来实现插图之间的准确和有效的风格比较。该算法结合了密集提取的异质局部视觉特征。在使用基于无监督降维的距离度量学习处理显著性和紧凑性之前,这些特征被聚合到每个插图的特征向量中。使用多个基准数据集对所提方法进行的实验评估表明,所提方法优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An unsupervised approach for comparing styles of illustrations
In creating web pages, books, or presentation slides, consistent use of tasteful visual style(s) is quite important. In this paper, we consider the problem of style-based comparison and retrieval of illustrations. In their pioneering work, Garces et al. [2] proposed an algorithm for comparing illustrative style. The algorithm uses supervised learning that relied on stylistic labels present in a training dataset. In reality, obtaining such labels is quite difficult. In this paper, we propose an unsupervised approach to achieve accurate and efficient stylistic comparison among illustrations. The proposed algorithm combines heterogeneous local visual features extracted densely. These features are aggregated into a feature vector per illustration prior to be treated with distance metric learning based on unsupervised dimension reduction for saliency and compactness. Experimental evaluation of the proposed method by using multiple benchmark datasets indicates that the proposed method outperforms existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Empirical evaluation of dissimilarity measures for 3D object retrieval with application to multi-feature retrieval A factorized model for multiple SVM and multi-label classification for large scale multimedia indexing On the use of statistical semantics for metadata-based social image retrieval Automatic detection of repetitive actions in a video Hierarchical clustering pseudo-relevance feedback for social image search result diversification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1