用于票房预测的深度学习静态和动态电影属性

Linxi Chen
{"title":"用于票房预测的深度学习静态和动态电影属性","authors":"Linxi Chen","doi":"10.1145/3507548.3507610","DOIUrl":null,"url":null,"abstract":"The daily audience data and static movie attributes are both important factors that influence the movie's succeeding box offices. This paper proposes the first framework that utilizes both daily audience data and static movie attributes to accurately the performance of movies’ box-office prediction. To use the daily audience data dynamics, we utilized the recent proposed rank pooling strategy to encode multi-scale audience data dynamics. Meanwhile, we also consider 15 static movie attributes. Both static and dynamic features are combined in a multi-stream residual network for box-office prediction. The experiments conducted on the dataset that contains 120 movies’ daily audience data show that the proposed multi-scale dynamic encoding achieved promising results in prediction the next one- or two-days’ box office while the static-dynamic fusion model achieved the best performance under all conditions","PeriodicalId":414908,"journal":{"name":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Static and Dynamic Movie Attributes for Box Office Prediction\",\"authors\":\"Linxi Chen\",\"doi\":\"10.1145/3507548.3507610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The daily audience data and static movie attributes are both important factors that influence the movie's succeeding box offices. This paper proposes the first framework that utilizes both daily audience data and static movie attributes to accurately the performance of movies’ box-office prediction. To use the daily audience data dynamics, we utilized the recent proposed rank pooling strategy to encode multi-scale audience data dynamics. Meanwhile, we also consider 15 static movie attributes. Both static and dynamic features are combined in a multi-stream residual network for box-office prediction. The experiments conducted on the dataset that contains 120 movies’ daily audience data show that the proposed multi-scale dynamic encoding achieved promising results in prediction the next one- or two-days’ box office while the static-dynamic fusion model achieved the best performance under all conditions\",\"PeriodicalId\":414908,\"journal\":{\"name\":\"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3507548.3507610\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 5th International Conference on Computer Science and Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507548.3507610","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

日常的观众数据和静态的电影属性都是影响电影后续票房的重要因素。本文提出了第一个利用日常观众数据和静态电影属性来准确预测电影票房的框架。为了利用日常受众数据动态,我们利用最近提出的秩池策略对多尺度受众数据动态进行编码。同时,我们还考虑了15个静态电影属性。在多流残差网络中结合静态和动态特征进行票房预测。在包含120部电影每日观众数据的数据集上进行的实验表明,所提出的多尺度动态编码在预测未来一天或两天的票房方面取得了很好的效果,而静态-动态融合模型在所有条件下都取得了最好的性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning Static and Dynamic Movie Attributes for Box Office Prediction
The daily audience data and static movie attributes are both important factors that influence the movie's succeeding box offices. This paper proposes the first framework that utilizes both daily audience data and static movie attributes to accurately the performance of movies’ box-office prediction. To use the daily audience data dynamics, we utilized the recent proposed rank pooling strategy to encode multi-scale audience data dynamics. Meanwhile, we also consider 15 static movie attributes. Both static and dynamic features are combined in a multi-stream residual network for box-office prediction. The experiments conducted on the dataset that contains 120 movies’ daily audience data show that the proposed multi-scale dynamic encoding achieved promising results in prediction the next one- or two-days’ box office while the static-dynamic fusion model achieved the best performance under all conditions
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-atlas segmentation of knee cartilage via Semi-supervised Regional Label Propagation Comparative Study of Music Visualization based on CiteSpace at China and the World Enhanced Efficient YOLOv3-tiny for Object Detection Identification of Plant Stomata Based on YOLO v5 Deep Learning Model Predictive Screening of Accident Black Spots based on Deep Neural Models of Road Networks and Facilities: A Case Study based on a District in Hong Kong
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1