基于遗传算法的文本自动摘要提取

Abdullah Ammar Karcioglu, Ahmet Cahit Yaşa
{"title":"基于遗传算法的文本自动摘要提取","authors":"Abdullah Ammar Karcioglu, Ahmet Cahit Yaşa","doi":"10.1109/SIU49456.2020.9302205","DOIUrl":null,"url":null,"abstract":"Automatic text summarization is one of the applications of natural language processing that has been studied for a long time. The increase in the amount of information in web resources has increased the need for automatic text summarization methods. It is difficult to design a system to produce abstracts created by human hands. For this reason, many researchers have focused on extracting sentences or paragraphs, which is a kind of summary. In this study, we introduce a method that was created using genetic algorithms to generate such summaries. After the texts are preprocessed, vocabulary is created and given as input to the proposed method. The sentence selection based on Genetic Algorithm is used to summarize and after that the summary is created, it is evaluated using the fitness function. In our first model, the fitness function is based on the frequency of each word and the word pair frequencies. The results of the applied model are discussed using the same dataset in another method based on tf-idf, with precision, recall, fscore and Rouge metrics.","PeriodicalId":312627,"journal":{"name":"2020 28th Signal Processing and Communications Applications Conference (SIU)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Automatic Summary Extraction in Texts Using Genetic Algorithms\",\"authors\":\"Abdullah Ammar Karcioglu, Ahmet Cahit Yaşa\",\"doi\":\"10.1109/SIU49456.2020.9302205\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic text summarization is one of the applications of natural language processing that has been studied for a long time. The increase in the amount of information in web resources has increased the need for automatic text summarization methods. It is difficult to design a system to produce abstracts created by human hands. For this reason, many researchers have focused on extracting sentences or paragraphs, which is a kind of summary. In this study, we introduce a method that was created using genetic algorithms to generate such summaries. After the texts are preprocessed, vocabulary is created and given as input to the proposed method. The sentence selection based on Genetic Algorithm is used to summarize and after that the summary is created, it is evaluated using the fitness function. In our first model, the fitness function is based on the frequency of each word and the word pair frequencies. The results of the applied model are discussed using the same dataset in another method based on tf-idf, with precision, recall, fscore and Rouge metrics.\",\"PeriodicalId\":312627,\"journal\":{\"name\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 28th Signal Processing and Communications Applications Conference (SIU)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIU49456.2020.9302205\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU49456.2020.9302205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

自动文本摘要是自然语言处理的应用之一,研究已久。随着网络资源信息量的增加,对自动文本摘要方法的需求也随之增加。设计一个系统来产生由人类手工创造的抽象概念是很困难的。因此,许多研究者都把重点放在句子或段落的提取上,这是一种总结。在本研究中,我们介绍了一种使用遗传算法创建的方法来生成此类摘要。在对文本进行预处理后,创建词汇表并将其作为所提出方法的输入。采用基于遗传算法的句子选择进行总结,建立总结后使用适应度函数对其进行评价。在我们的第一个模型中,适应度函数基于每个单词的频率和单词对的频率。使用相同的数据集在另一种基于tf-idf的方法中讨论了应用模型的结果,该方法具有精度,召回率,fscore和Rouge指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic Summary Extraction in Texts Using Genetic Algorithms
Automatic text summarization is one of the applications of natural language processing that has been studied for a long time. The increase in the amount of information in web resources has increased the need for automatic text summarization methods. It is difficult to design a system to produce abstracts created by human hands. For this reason, many researchers have focused on extracting sentences or paragraphs, which is a kind of summary. In this study, we introduce a method that was created using genetic algorithms to generate such summaries. After the texts are preprocessed, vocabulary is created and given as input to the proposed method. The sentence selection based on Genetic Algorithm is used to summarize and after that the summary is created, it is evaluated using the fitness function. In our first model, the fitness function is based on the frequency of each word and the word pair frequencies. The results of the applied model are discussed using the same dataset in another method based on tf-idf, with precision, recall, fscore and Rouge metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Skin Lesion Classification With Deep CNN Ensembles Design of a New System for Upper Extremity Movement Ability Assessment Stock Market Prediction with Stacked Autoencoder Based Feature Reduction Segmentation networks reinforced with attribute profiles for large scale land-cover map production Encoded Deep Features for Visual Place Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1