基于强化学习的弹性应用入侵响应方法

Stefano Iannucci, E. Casalicchio, Matteo Lucantonio
{"title":"基于强化学习的弹性应用入侵响应方法","authors":"Stefano Iannucci, E. Casalicchio, Matteo Lucantonio","doi":"10.1109/SSCI50451.2021.9659882","DOIUrl":null,"url":null,"abstract":"Intrusion Response is a relatively new field of research. Several model-based techniques have been proposed that range from static mapping to complex stateful approaches. However, the main limitation that all of them have in common is that they do not consider the non-stationary behavior of the protected system which, in combination with long planning times, makes it unfeasible to use them on dynamic and large-scale systems. In this work, we propose an Intrusion Response controller based on deep reinforcement learning and transfer learning, which automatically adapts to system changes. We empirically demonstrate its effectiveness and its performance on Online Boutique, a cloud-based web application that Google uses to showcase its cloud technologies. We first carry out an extensive tuning of the hyper-parameters of the neural networks that implement our approach. Afterwards, we empirically show the effectiveness and the performance of the realized Intrusion Response controller in a typical cloud scenario, that is, when instances are added or removed from the system. Experimental results show that a proper hyper-parameter tuning can reduce the training time by up to 50%. Furthermore, transfer learning completely zeroes the transient adaptation stage when the number of replicas of a given service is reduced. The training during the transient stage exhibits instead a speed-up of 1.25x in case a replica is added. For reproducibility, the source code of the Intrusion Response System is released with the onen-source Apache 2.0 license.","PeriodicalId":255763,"journal":{"name":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Intrusion Response Approach for Elastic Applications Based on Reinforcement Learning\",\"authors\":\"Stefano Iannucci, E. Casalicchio, Matteo Lucantonio\",\"doi\":\"10.1109/SSCI50451.2021.9659882\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Intrusion Response is a relatively new field of research. Several model-based techniques have been proposed that range from static mapping to complex stateful approaches. However, the main limitation that all of them have in common is that they do not consider the non-stationary behavior of the protected system which, in combination with long planning times, makes it unfeasible to use them on dynamic and large-scale systems. In this work, we propose an Intrusion Response controller based on deep reinforcement learning and transfer learning, which automatically adapts to system changes. We empirically demonstrate its effectiveness and its performance on Online Boutique, a cloud-based web application that Google uses to showcase its cloud technologies. We first carry out an extensive tuning of the hyper-parameters of the neural networks that implement our approach. Afterwards, we empirically show the effectiveness and the performance of the realized Intrusion Response controller in a typical cloud scenario, that is, when instances are added or removed from the system. Experimental results show that a proper hyper-parameter tuning can reduce the training time by up to 50%. Furthermore, transfer learning completely zeroes the transient adaptation stage when the number of replicas of a given service is reduced. The training during the transient stage exhibits instead a speed-up of 1.25x in case a replica is added. For reproducibility, the source code of the Intrusion Response System is released with the onen-source Apache 2.0 license.\",\"PeriodicalId\":255763,\"journal\":{\"name\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI50451.2021.9659882\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI50451.2021.9659882","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

入侵响应是一个相对较新的研究领域。已经提出了几种基于模型的技术,范围从静态映射到复杂的有状态方法。然而,它们共同的主要限制是它们没有考虑受保护系统的非平稳行为,再加上规划时间长,使得在动态和大规模系统上使用它们变得不可行的。在这项工作中,我们提出了一种基于深度强化学习和迁移学习的入侵响应控制器,可以自动适应系统的变化。我们在Google用来展示其云技术的基于云的网络应用Online Boutique上实证地展示了它的有效性和性能。我们首先对实现我们方法的神经网络的超参数进行广泛的调整。然后,我们在一个典型的云场景中,即从系统中添加或删除实例时,实证地展示了所实现的入侵响应控制器的有效性和性能。实验结果表明,适当的超参数调整可以减少高达50%的训练时间。此外,当给定服务的副本数量减少时,迁移学习完全消除了瞬态适应阶段。在临时阶段的训练中,如果添加一个副本,则会显示1.25倍的加速。为了可再现性,入侵响应系统的源代码使用了开源Apache 2.0许可证发布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Intrusion Response Approach for Elastic Applications Based on Reinforcement Learning
Intrusion Response is a relatively new field of research. Several model-based techniques have been proposed that range from static mapping to complex stateful approaches. However, the main limitation that all of them have in common is that they do not consider the non-stationary behavior of the protected system which, in combination with long planning times, makes it unfeasible to use them on dynamic and large-scale systems. In this work, we propose an Intrusion Response controller based on deep reinforcement learning and transfer learning, which automatically adapts to system changes. We empirically demonstrate its effectiveness and its performance on Online Boutique, a cloud-based web application that Google uses to showcase its cloud technologies. We first carry out an extensive tuning of the hyper-parameters of the neural networks that implement our approach. Afterwards, we empirically show the effectiveness and the performance of the realized Intrusion Response controller in a typical cloud scenario, that is, when instances are added or removed from the system. Experimental results show that a proper hyper-parameter tuning can reduce the training time by up to 50%. Furthermore, transfer learning completely zeroes the transient adaptation stage when the number of replicas of a given service is reduced. The training during the transient stage exhibits instead a speed-up of 1.25x in case a replica is added. For reproducibility, the source code of the Intrusion Response System is released with the onen-source Apache 2.0 license.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Voice Dialog System for Simulated Patient Robot and Detection of Interviewer Nodding Deep Learning Approaches to Remaining Useful Life Prediction: A Survey Evaluation of Graph Convolutions for Spatio-Temporal Predictions of EV-Charge Availability Balanced K-means using Quantum annealing A Study of Transfer Learning in a Generation Constructive Hyper-Heuristic for One Dimensional Bin Packing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1