{"title":"基于生物的视觉寻的制导原理和鲁棒性问题","authors":"G. Bianco, A. Rizzi, R. Cassinis, N. Adami","doi":"10.1109/EURBOT.1999.827633","DOIUrl":null,"url":null,"abstract":"Analyses the guidance principle and the robustness features of a biologically-inspired visual homing algorithm for autonomous robots. The homing strategy uses colour images and is based on an affine matching model whose parameters are used to estimate real navigation displacement in the environment. The guidance principle of the visual homing is proven to be a visual potential function with an equilibrium point located at the goal position. The presence of a potential function means that classical control-theory principles based on the Lyapunov functions can be applied to assess the robustness of the navigation strategy.","PeriodicalId":364500,"journal":{"name":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Guidance principle and robustness issues for a biologically-inspired visual homing\",\"authors\":\"G. Bianco, A. Rizzi, R. Cassinis, N. Adami\",\"doi\":\"10.1109/EURBOT.1999.827633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Analyses the guidance principle and the robustness features of a biologically-inspired visual homing algorithm for autonomous robots. The homing strategy uses colour images and is based on an affine matching model whose parameters are used to estimate real navigation displacement in the environment. The guidance principle of the visual homing is proven to be a visual potential function with an equilibrium point located at the goal position. The presence of a potential function means that classical control-theory principles based on the Lyapunov functions can be applied to assess the robustness of the navigation strategy.\",\"PeriodicalId\":364500,\"journal\":{\"name\":\"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EURBOT.1999.827633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 Third European Workshop on Advanced Mobile Robots (Eurobot'99). Proceedings (Cat. No.99EX355)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EURBOT.1999.827633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Guidance principle and robustness issues for a biologically-inspired visual homing
Analyses the guidance principle and the robustness features of a biologically-inspired visual homing algorithm for autonomous robots. The homing strategy uses colour images and is based on an affine matching model whose parameters are used to estimate real navigation displacement in the environment. The guidance principle of the visual homing is proven to be a visual potential function with an equilibrium point located at the goal position. The presence of a potential function means that classical control-theory principles based on the Lyapunov functions can be applied to assess the robustness of the navigation strategy.