学习非负半空间聚类

Kangheng Hu, Jinyu Tian, Yuanyan Tang
{"title":"学习非负半空间聚类","authors":"Kangheng Hu, Jinyu Tian, Yuanyan Tang","doi":"10.1109/ICWAPR.2018.8521244","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel clustering algorithm which is called Non-negative Half-space Clustering (NHC), by revealing the nonnegative half-space structure of samples. The half-space is the union of some nearly independent half-spaces, and each class of samples is dominated by this half-space. Since the subspace independent assumption is not imposed on the samples, NHC is robust for the increasing of number of classes compared with other subspace clustering methods such as Sparse Space Clustering. After obtaining a half-space structure, the adjacency graph is almost block-wise, and can be well grouped by some cutting techniques. In the experiment section, we implement NHC and other competitive algorithms on two database CBCL and Reuters-21578. The result shows that NHC performs better on the two database, and more robust than SSC.","PeriodicalId":385478,"journal":{"name":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Clustering by Learning the Non-Negative Half-Space\",\"authors\":\"Kangheng Hu, Jinyu Tian, Yuanyan Tang\",\"doi\":\"10.1109/ICWAPR.2018.8521244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel clustering algorithm which is called Non-negative Half-space Clustering (NHC), by revealing the nonnegative half-space structure of samples. The half-space is the union of some nearly independent half-spaces, and each class of samples is dominated by this half-space. Since the subspace independent assumption is not imposed on the samples, NHC is robust for the increasing of number of classes compared with other subspace clustering methods such as Sparse Space Clustering. After obtaining a half-space structure, the adjacency graph is almost block-wise, and can be well grouped by some cutting techniques. In the experiment section, we implement NHC and other competitive algorithms on two database CBCL and Reuters-21578. The result shows that NHC performs better on the two database, and more robust than SSC.\",\"PeriodicalId\":385478,\"journal\":{\"name\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICWAPR.2018.8521244\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Wavelet Analysis and Pattern Recognition (ICWAPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2018.8521244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过揭示样本的非负半空间结构,提出了一种新的聚类算法——非负半空间聚类(NHC)。这个半空间是一些几乎独立的半空间的并,每一类样本都受这个半空间支配。由于没有对样本施加子空间无关假设,因此与其他子空间聚类方法(如稀疏空间聚类)相比,NHC对于类数量的增加具有鲁棒性。在获得半空间结构后,邻接图几乎是逐块的,并且可以通过一些切割技术很好地分组。在实验部分,我们在CBCL和Reuters-21578两个数据库上实现了NHC和其他竞争算法。结果表明,NHC算法在两种数据库上的性能均优于SSC算法,鲁棒性优于SSC算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustering by Learning the Non-Negative Half-Space
This paper proposes a novel clustering algorithm which is called Non-negative Half-space Clustering (NHC), by revealing the nonnegative half-space structure of samples. The half-space is the union of some nearly independent half-spaces, and each class of samples is dominated by this half-space. Since the subspace independent assumption is not imposed on the samples, NHC is robust for the increasing of number of classes compared with other subspace clustering methods such as Sparse Space Clustering. After obtaining a half-space structure, the adjacency graph is almost block-wise, and can be well grouped by some cutting techniques. In the experiment section, we implement NHC and other competitive algorithms on two database CBCL and Reuters-21578. The result shows that NHC performs better on the two database, and more robust than SSC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of a Convolutional Autoencoder to Half Space Radar Hrrp Recognition Hyperspectral Image Classification Based on Different Affinity Metrics Research of Localization Algorithm of Internet of Vehicles Based on Intelligent Transportation Proceedings of International Conference on Wavelet Analysis and Pattern Recognition Phase Averaging on Square Cylinder Wake Based on Wavelet Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1