{"title":"利用虚拟机器人模型进行动态建模与控制","authors":"You-Liang Gu, N. Loh","doi":"10.1109/56.20438","DOIUrl":null,"url":null,"abstract":"A dynamic model that represents an exact linearization scheme with a simplified nonlinear feedback is presented. To realize this model for robotic systems, the output functions should be chosen so that a special decomposition of the total inertial matrix is satisfied. The concept of an imaginary robot is utilized to achieve the formulation and to solve the realization problem. Two illustrative examples are given in the paper, one for the Stanford arm and the other for a PUMA type of robot. An optimal robotic physical design and a control system design based on the new model are also discussed. >","PeriodicalId":370047,"journal":{"name":"IEEE J. Robotics Autom.","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1988-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Dynamic modeling and control by utilizing an imaginary robot model\",\"authors\":\"You-Liang Gu, N. Loh\",\"doi\":\"10.1109/56.20438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A dynamic model that represents an exact linearization scheme with a simplified nonlinear feedback is presented. To realize this model for robotic systems, the output functions should be chosen so that a special decomposition of the total inertial matrix is satisfied. The concept of an imaginary robot is utilized to achieve the formulation and to solve the realization problem. Two illustrative examples are given in the paper, one for the Stanford arm and the other for a PUMA type of robot. An optimal robotic physical design and a control system design based on the new model are also discussed. >\",\"PeriodicalId\":370047,\"journal\":{\"name\":\"IEEE J. Robotics Autom.\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE J. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/56.20438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE J. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/56.20438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic modeling and control by utilizing an imaginary robot model
A dynamic model that represents an exact linearization scheme with a simplified nonlinear feedback is presented. To realize this model for robotic systems, the output functions should be chosen so that a special decomposition of the total inertial matrix is satisfied. The concept of an imaginary robot is utilized to achieve the formulation and to solve the realization problem. Two illustrative examples are given in the paper, one for the Stanford arm and the other for a PUMA type of robot. An optimal robotic physical design and a control system design based on the new model are also discussed. >