CUDA:用于高性能科学计算的可扩展并行编程

D. Luebke
{"title":"CUDA:用于高性能科学计算的可扩展并行编程","authors":"D. Luebke","doi":"10.1109/ISBI.2008.4541126","DOIUrl":null,"url":null,"abstract":"Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are \"manycore\" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.","PeriodicalId":184204,"journal":{"name":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"205","resultStr":"{\"title\":\"CUDA: Scalable parallel programming for high-performance scientific computing\",\"authors\":\"D. Luebke\",\"doi\":\"10.1109/ISBI.2008.4541126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are \\\"manycore\\\" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.\",\"PeriodicalId\":184204,\"journal\":{\"name\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"205\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBI.2008.4541126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2008.4541126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 205

摘要

最初为计算机显卡设计的图形处理单元(gpu)已经成为高性能工作站中最强大的芯片。与多核CPU架构不同的是,目前的多核CPU架构只有两个或四个核心,而GPU架构是“多核”的,拥有数百个核心,能够并行运行数千个线程。NVIDIA的CUDA是一种共同发展的硬件软件架构,使高性能计算开发人员能够在熟悉的编程环境(C编程语言)中利用GPU的巨大计算能力和内存带宽。我们描述了CUDA编程模型,并激励其在生物医学成像社区的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CUDA: Scalable parallel programming for high-performance scientific computing
Graphics processing units (GPUs) originally designed for computer video cards have emerged as the most powerful chip in a high-performance workstation. Unlike multicore CPU architectures, which currently ship with two or four cores, GPU architectures are "manycore" with hundreds of cores capable of running thousands of threads in parallel. NVIDIA's CUDA is a co-evolved hardware-software architecture that enables high-performance computing developers to harness the tremendous computational power and memory bandwidth of the GPU in a familiar programming environment - the C programming language. We describe the CUDA programming model and motivate its use in the biomedical imaging community.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EEG source localization by multi-planar analytic sensing 3D general lesion segmentation in CT Automated grading of breast cancer histopathology using spectral clustering with textural and architectural image features Iterative nonlinear least squares algorithms for direct reconstruction of parametric images from dynamic PET Pathological image segmentation for neuroblastoma using the GPU
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1