纠错码的ADMM解码:从几何图形到算法

Xishuo Liu, S. Draper
{"title":"纠错码的ADMM解码:从几何图形到算法","authors":"Xishuo Liu, S. Draper","doi":"10.1109/ITW.2015.7133156","DOIUrl":null,"url":null,"abstract":"Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an ℓ1 ball with box constraints.","PeriodicalId":174797,"journal":{"name":"2015 IEEE Information Theory Workshop (ITW)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ADMM decoding of error correction codes: From geometries to algorithms\",\"authors\":\"Xishuo Liu, S. Draper\",\"doi\":\"10.1109/ITW.2015.7133156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an ℓ1 ball with box constraints.\",\"PeriodicalId\":174797,\"journal\":{\"name\":\"2015 IEEE Information Theory Workshop (ITW)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Information Theory Workshop (ITW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITW.2015.7133156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Information Theory Workshop (ITW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITW.2015.7133156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多代码约束可以用因子图表示。通过将这些可分解的编码约束放宽为线性约束,可以直接形成解码优化问题。此外,通过将这些因子图与大规模优化的乘法器交替方向法(ADMM)技术配对,可以开发分布式算法来解决解码优化问题。然而,对于ADMM的子程序,开发一种有效的算法一直是重要的部分,这直接关系到放宽编码约束的几何形状。在本文中,我们着重于总结现有的结果并提炼出对这些问题的见解。首先,我们回顾了ADMM公式和子程序中涉及的几何形状。其次,我们提出了一个线性时间算法,用于投影到具有框约束的1个球上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ADMM decoding of error correction codes: From geometries to algorithms
Many code constraints can be represented using factor graphs. By relaxing these factorable coding constraints to linear constraints, it is straightforward to form a decoding optimization problem. Furthermore, by pairing these factor graphs with the alternating directions method of multipliers (ADMM) technique of large-scale optimization, one can develop distributed algorithms to solve the decoding optimization problems. However, the non-trivial part has always been developing an efficient algorithm for the subroutines of ADMM, which directly relates to the geometries of the relaxed coding constraints. In this paper, we focus on summarizing existing results and distilling insights to these problems. First, we review the ADMM formulation and geometries involved in the subroutines. Next, we present a linear time algorithm for projecting onto an ℓ1 ball with box constraints.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Degraded broadcast channel: Secrecy outside of a bounded range On compute-and-forward with feedback On the capacity of multihop device-to-device caching networks Lattice index coding for the broadcast channel On the transmission of a bivariate Gaussian source over the Gaussian broadcast channel with feedback
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1