基于双线性近似消息传递的多用户毫米波MIMO离网信道估计

Yang Li, Shuyi Chen, W. Meng
{"title":"基于双线性近似消息传递的多用户毫米波MIMO离网信道估计","authors":"Yang Li, Shuyi Chen, W. Meng","doi":"10.1109/VTC2022-Fall57202.2022.10012928","DOIUrl":null,"url":null,"abstract":"Massive multiple-input-multiple-output (MIMO) and millimeter-wave (mmWave) have been adopted as the enabling technologies for the 5G and beyond 5G (B5G) systems. However, due to the large number of antennas, it is hard to obtain the channel state information (CSI) which is essential for obtaining desirable beamforming gains. Off-grid error is one of the main limiting factors of the channel estimation (CE) performance, which presents when the true angle does not lie on the discretized angle grid of mmWave channel. To address this problem, we propose a joint algorithm named off-grid approximate message passing (OG-AMP) to achieve both angular domain CE and off-grid errors eliminationin in this paper. Specially, we formulate CE issue as a Bayesian inference problem to compute the posterior of the channel coefficients and adopt the Gaussian approximation to simplify the sum-product algorithm. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method.","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear Approximate Message Passing Based Off-grid Channel Estimation for Multi-user Millimeter-Wave MIMO System\",\"authors\":\"Yang Li, Shuyi Chen, W. Meng\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10012928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Massive multiple-input-multiple-output (MIMO) and millimeter-wave (mmWave) have been adopted as the enabling technologies for the 5G and beyond 5G (B5G) systems. However, due to the large number of antennas, it is hard to obtain the channel state information (CSI) which is essential for obtaining desirable beamforming gains. Off-grid error is one of the main limiting factors of the channel estimation (CE) performance, which presents when the true angle does not lie on the discretized angle grid of mmWave channel. To address this problem, we propose a joint algorithm named off-grid approximate message passing (OG-AMP) to achieve both angular domain CE and off-grid errors eliminationin in this paper. Specially, we formulate CE issue as a Bayesian inference problem to compute the posterior of the channel coefficients and adopt the Gaussian approximation to simplify the sum-product algorithm. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method.\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10012928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大规模多输入多输出(MIMO)和毫米波(mmWave)已被采用为5G及5G以上(B5G)系统的使能技术。然而,由于天线数量众多,信道状态信息难以获取,而信道状态信息是获得理想波束形成增益所必需的。离网误差是影响信道估计性能的主要因素之一,当真实角度不在毫米波信道的离散角度网格上时,离网误差就会出现。为了解决这一问题,本文提出了一种联合算法,即离网近似消息传递(ogg - amp),以实现角域CE和离网误差消除。特别地,我们将CE问题化为贝叶斯推理问题来计算信道系数的后验,并采用高斯近似来简化和积算法。仿真结果表明,本文提出的算法比现有的基准算法具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bilinear Approximate Message Passing Based Off-grid Channel Estimation for Multi-user Millimeter-Wave MIMO System
Massive multiple-input-multiple-output (MIMO) and millimeter-wave (mmWave) have been adopted as the enabling technologies for the 5G and beyond 5G (B5G) systems. However, due to the large number of antennas, it is hard to obtain the channel state information (CSI) which is essential for obtaining desirable beamforming gains. Off-grid error is one of the main limiting factors of the channel estimation (CE) performance, which presents when the true angle does not lie on the discretized angle grid of mmWave channel. To address this problem, we propose a joint algorithm named off-grid approximate message passing (OG-AMP) to achieve both angular domain CE and off-grid errors eliminationin in this paper. Specially, we formulate CE issue as a Bayesian inference problem to compute the posterior of the channel coefficients and adopt the Gaussian approximation to simplify the sum-product algorithm. Our simulation results show that the proposed algorithm shows the superiority over a state-of-art benchmark method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Non-Orthogonal Neighbor Election Random Access for Distributed 6G Wireless Networks Coverage Performance Analysis of Piggyback Mobile IoT in 5G Vehicular Networks Performance Comparison of Error-Control Schemes in Collaborative Multiple-Input Multiple-Output Systems Valuation-Aware Federated Learning: An Auction-Based Approach for User Selection Design of Robust LoS-MIMO Transmission in HAPS Feeder Link
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1