James Westphal, Antao Chen, Nathaniel Burt, Lih Y. Lin, L. Dalton, Jingdong Luo, A. Jen
{"title":"聚合物中高性能非线性发色团的脉冲极化","authors":"James Westphal, Antao Chen, Nathaniel Burt, Lih Y. Lin, L. Dalton, Jingdong Luo, A. Jen","doi":"10.1117/12.698378","DOIUrl":null,"url":null,"abstract":"Conjugated chromophores with permanent dipole moments can be aligned by heating a thin polymer film containing chromophores in an external electric field. The heated \"guest-host\" system is then cooled in the field to maintain the chromophores' alignment. Dielectric breakdown and charge transfer, however, often limit the external electric field to about 100 V/μm of film thickness. It was hypothesized that electrical pulses could increase the voltage of the poling field without damaging the sample films. This was achieved by combining an amplified waveform from a function generator with the DC poling field. Pulse amplitudes were varied from 10 to 103 V. Pulse frequencies were varied from 10-1 to 103 Hz with a duty cycle of up to 50% of the pulse period. Pulse amplitudes were found to have optimum effects at less than 15% of the DC field at low frequencies, 0.1-10 Hz, with a sinusoidal pulse shape. It was found that this technique induced up to a 20% improvement in optical properties without damaging the sample films.","PeriodicalId":406438,"journal":{"name":"SPIE Optics + Photonics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Pulse poling of high performance nonlinear chromophores in polymers\",\"authors\":\"James Westphal, Antao Chen, Nathaniel Burt, Lih Y. Lin, L. Dalton, Jingdong Luo, A. Jen\",\"doi\":\"10.1117/12.698378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conjugated chromophores with permanent dipole moments can be aligned by heating a thin polymer film containing chromophores in an external electric field. The heated \\\"guest-host\\\" system is then cooled in the field to maintain the chromophores' alignment. Dielectric breakdown and charge transfer, however, often limit the external electric field to about 100 V/μm of film thickness. It was hypothesized that electrical pulses could increase the voltage of the poling field without damaging the sample films. This was achieved by combining an amplified waveform from a function generator with the DC poling field. Pulse amplitudes were varied from 10 to 103 V. Pulse frequencies were varied from 10-1 to 103 Hz with a duty cycle of up to 50% of the pulse period. Pulse amplitudes were found to have optimum effects at less than 15% of the DC field at low frequencies, 0.1-10 Hz, with a sinusoidal pulse shape. It was found that this technique induced up to a 20% improvement in optical properties without damaging the sample films.\",\"PeriodicalId\":406438,\"journal\":{\"name\":\"SPIE Optics + Photonics\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.698378\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.698378","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Pulse poling of high performance nonlinear chromophores in polymers
Conjugated chromophores with permanent dipole moments can be aligned by heating a thin polymer film containing chromophores in an external electric field. The heated "guest-host" system is then cooled in the field to maintain the chromophores' alignment. Dielectric breakdown and charge transfer, however, often limit the external electric field to about 100 V/μm of film thickness. It was hypothesized that electrical pulses could increase the voltage of the poling field without damaging the sample films. This was achieved by combining an amplified waveform from a function generator with the DC poling field. Pulse amplitudes were varied from 10 to 103 V. Pulse frequencies were varied from 10-1 to 103 Hz with a duty cycle of up to 50% of the pulse period. Pulse amplitudes were found to have optimum effects at less than 15% of the DC field at low frequencies, 0.1-10 Hz, with a sinusoidal pulse shape. It was found that this technique induced up to a 20% improvement in optical properties without damaging the sample films.