{"title":"按形式自动分类文件","authors":"Fadi Abu Sheikha, D. Inkpen","doi":"10.1109/NLPKE.2010.5587767","DOIUrl":null,"url":null,"abstract":"This paper addresses the task of classifying documents into formal or informal style. We studied the main characteristics of each style in order to choose features that allowed us to train classifiers that can distinguish between the two styles. We built our data set by collecting documents for both styles, from different sources. We tested several classification algorithms, namely Decision Trees, Naïve Bayes, and Support Vector Machines, to choose the classifier that leads to the best classification results. We performed attribute selection in order to determine the contribution of each feature to our model.","PeriodicalId":259975,"journal":{"name":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Automatic classification of documents by formality\",\"authors\":\"Fadi Abu Sheikha, D. Inkpen\",\"doi\":\"10.1109/NLPKE.2010.5587767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the task of classifying documents into formal or informal style. We studied the main characteristics of each style in order to choose features that allowed us to train classifiers that can distinguish between the two styles. We built our data set by collecting documents for both styles, from different sources. We tested several classification algorithms, namely Decision Trees, Naïve Bayes, and Support Vector Machines, to choose the classifier that leads to the best classification results. We performed attribute selection in order to determine the contribution of each feature to our model.\",\"PeriodicalId\":259975,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NLPKE.2010.5587767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Natural Language Processing and Knowledge Engineering(NLPKE-2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NLPKE.2010.5587767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文解决了将文档分类为正式或非正式风格的任务。我们研究了每种风格的主要特征,以便选择能够让我们训练能够区分两种风格的分类器的特征。我们通过收集来自不同来源的两种风格的文档来构建数据集。我们测试了几种分类算法,即决策树,Naïve贝叶斯和支持向量机,以选择导致最佳分类结果的分类器。为了确定每个特征对模型的贡献,我们执行了属性选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic classification of documents by formality
This paper addresses the task of classifying documents into formal or informal style. We studied the main characteristics of each style in order to choose features that allowed us to train classifiers that can distinguish between the two styles. We built our data set by collecting documents for both styles, from different sources. We tested several classification algorithms, namely Decision Trees, Naïve Bayes, and Support Vector Machines, to choose the classifier that leads to the best classification results. We performed attribute selection in order to determine the contribution of each feature to our model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dashboard: An integration and testing platform based on backboard architecture for NLP applications Chinese semantic role labeling based on semantic knowledge Transitivity in semantic relation learning Wisdom media “CAIWA Channel” based on natural language interface agent A new cascade algorithm based on CRFs for recognizing Chinese verb-object collocation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1