一种新的多时间序列模式提取方法

P. Hong, S. Ray, Thomas Huang
{"title":"一种新的多时间序列模式提取方法","authors":"P. Hong, S. Ray, Thomas Huang","doi":"10.1109/IJCNN.1999.833494","DOIUrl":null,"url":null,"abstract":"This paper proposes a new scheme for unsupervised multi-temporal sequence pattern extraction. The main idea of the scheme is iterative coarse to fine data examination. We decompose a pattern into ambiguous subpatterns and distinguishable sub-patterns (DSP). In each iteration, we coarsely examine the training temporal signal sequence by training an Elman neural network. The trained Elman network is used to select the DSP candidate set. Then, we look at the training signals around the DSPs and use maximum likelihood criteria to expand them into whole patterns. We cut out the new found patterns from the training signal sequence and repeat the whole procedure until no more new patterns are found. The experimental result shows this method promising.","PeriodicalId":157719,"journal":{"name":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A new scheme for extracting multi-temporal sequence patterns\",\"authors\":\"P. Hong, S. Ray, Thomas Huang\",\"doi\":\"10.1109/IJCNN.1999.833494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new scheme for unsupervised multi-temporal sequence pattern extraction. The main idea of the scheme is iterative coarse to fine data examination. We decompose a pattern into ambiguous subpatterns and distinguishable sub-patterns (DSP). In each iteration, we coarsely examine the training temporal signal sequence by training an Elman neural network. The trained Elman network is used to select the DSP candidate set. Then, we look at the training signals around the DSPs and use maximum likelihood criteria to expand them into whole patterns. We cut out the new found patterns from the training signal sequence and repeat the whole procedure until no more new patterns are found. The experimental result shows this method promising.\",\"PeriodicalId\":157719,\"journal\":{\"name\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.1999.833494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.1999.833494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种新的无监督多时间序列模式提取方案。该方案的主要思想是迭代的粗到精数据检验。我们将一个模式分解为模糊子模式和可分辨子模式(DSP)。在每次迭代中,我们通过训练Elman神经网络对训练时间信号序列进行粗检验。利用训练好的Elman网络选择DSP候选集。然后,我们查看dsp周围的训练信号,并使用最大似然标准将其扩展为整个模式。我们从训练信号序列中剔除新发现的模式,并重复整个过程,直到没有发现新的模式。实验结果表明,该方法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new scheme for extracting multi-temporal sequence patterns
This paper proposes a new scheme for unsupervised multi-temporal sequence pattern extraction. The main idea of the scheme is iterative coarse to fine data examination. We decompose a pattern into ambiguous subpatterns and distinguishable sub-patterns (DSP). In each iteration, we coarsely examine the training temporal signal sequence by training an Elman neural network. The trained Elman network is used to select the DSP candidate set. Then, we look at the training signals around the DSPs and use maximum likelihood criteria to expand them into whole patterns. We cut out the new found patterns from the training signal sequence and repeat the whole procedure until no more new patterns are found. The experimental result shows this method promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Predicting human cortical connectivity for language areas using the Conel database Identification of nonlinear dynamic systems by using probabilistic universal learning networks Knowledge processing system using chaotic associative memory Computer-aided diagnosis of breast cancer using artificial neural networks: comparison of backpropagation and genetic algorithms A versatile framework for labelling imagery with a large number of classes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1