具有算术条件的数据感知过程的可靠性

Paolo Felli, M. Montali, S. Winkler
{"title":"具有算术条件的数据感知过程的可靠性","authors":"Paolo Felli, M. Montali, S. Winkler","doi":"10.48550/arXiv.2203.14809","DOIUrl":null,"url":null,"abstract":". Data-aware processes represent and integrate structural and behavioural constraints in a single model, and are thus increasingly inves-tigated in business process management and information systems engineering. In this spectrum, Data Petri nets (DPNs) have gained increasing popularity thanks to their ability to balance simplicity with expressive-ness. The interplay of data and control-flow makes checking the correctness of such models, specifically the well-known property of soundness, crucial and challenging. A major shortcoming of previous approaches for checking soundness of DPNs is that they consider data conditions without arithmetic, an essential feature when dealing with real-world, concrete applications. In this paper, we attack this open problem by providing a foundational and operational framework for assessing soundness of DPNs enriched with arithmetic data conditions. The framework comes with a proof-of-concept implementation that, instead of relying on ad-hoc techniques, employs off-the-shelf established SMT technologies. The implementation is validated on a collection of examples from the literature, and on synthetic variants constructed from such examples.","PeriodicalId":321309,"journal":{"name":"International Conference on Advanced Information Systems Engineering","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Soundness of Data-Aware Processes with Arithmetic Conditions\",\"authors\":\"Paolo Felli, M. Montali, S. Winkler\",\"doi\":\"10.48550/arXiv.2203.14809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Data-aware processes represent and integrate structural and behavioural constraints in a single model, and are thus increasingly inves-tigated in business process management and information systems engineering. In this spectrum, Data Petri nets (DPNs) have gained increasing popularity thanks to their ability to balance simplicity with expressive-ness. The interplay of data and control-flow makes checking the correctness of such models, specifically the well-known property of soundness, crucial and challenging. A major shortcoming of previous approaches for checking soundness of DPNs is that they consider data conditions without arithmetic, an essential feature when dealing with real-world, concrete applications. In this paper, we attack this open problem by providing a foundational and operational framework for assessing soundness of DPNs enriched with arithmetic data conditions. The framework comes with a proof-of-concept implementation that, instead of relying on ad-hoc techniques, employs off-the-shelf established SMT technologies. The implementation is validated on a collection of examples from the literature, and on synthetic variants constructed from such examples.\",\"PeriodicalId\":321309,\"journal\":{\"name\":\"International Conference on Advanced Information Systems Engineering\",\"volume\":\"18 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Advanced Information Systems Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2203.14809\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Advanced Information Systems Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2203.14809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

。数据感知过程在单个模型中表示并集成了结构和行为约束,因此在业务流程管理和信息系统工程中得到越来越多的研究。在这个范围内,数据Petri网(dpn)由于能够平衡简单性和表达性而越来越受欢迎。数据和控制流的相互作用使得检查这些模型的正确性,特别是众所周知的稳健性,至关重要和具有挑战性。以前用于检查dpn可靠性的方法的一个主要缺点是,它们考虑数据条件而不考虑算术,这是处理现实世界中具体应用程序时的一个基本特征。在本文中,我们通过提供一个基本的和可操作的框架来评估富含算术数据条件的dpn的稳健性来解决这个开放问题。该框架附带了一个概念验证实现,而不是依赖于特别的技术,而是使用现成的已建立的SMT技术。在文献中的一组示例以及由这些示例构建的合成变体上验证了该实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soundness of Data-Aware Processes with Arithmetic Conditions
. Data-aware processes represent and integrate structural and behavioural constraints in a single model, and are thus increasingly inves-tigated in business process management and information systems engineering. In this spectrum, Data Petri nets (DPNs) have gained increasing popularity thanks to their ability to balance simplicity with expressive-ness. The interplay of data and control-flow makes checking the correctness of such models, specifically the well-known property of soundness, crucial and challenging. A major shortcoming of previous approaches for checking soundness of DPNs is that they consider data conditions without arithmetic, an essential feature when dealing with real-world, concrete applications. In this paper, we attack this open problem by providing a foundational and operational framework for assessing soundness of DPNs enriched with arithmetic data conditions. The framework comes with a proof-of-concept implementation that, instead of relying on ad-hoc techniques, employs off-the-shelf established SMT technologies. The implementation is validated on a collection of examples from the literature, and on synthetic variants constructed from such examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PMDG: Privacy for Multi-Perspective Process Mining through Data Generalization CREATED: Generating Viable Counterfactual Sequences for Predictive Process Analytics Learning When to Treat Business Processes: Prescriptive Process Monitoring with Causal Inference and Reinforcement Learning Why am I Waiting? Data-Driven Analysis of Waiting Times in Business Processes Probabilistic and Non-deterministic Event Data in Process Mining: Embedding Uncertainty in Process Analysis Techniques
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1