智能空间聚类模式挖掘:不同方法的比较分析

Swati Meshram, K. Wagh
{"title":"智能空间聚类模式挖掘:不同方法的比较分析","authors":"Swati Meshram, K. Wagh","doi":"10.1109/INDIACom51348.2021.00056","DOIUrl":null,"url":null,"abstract":"Spatial data is a collection of information about the geospatial location and its events or characteristics. These spatial data are collected from the various positioning techniques viz. Global Positioning System (GPS), remote sensing, mobile devices, etc. A large amount of easily available spatial data drives the need to effectively uncover useful and interesting patterns using machine learning algorithms like Clustering. Clustering is a technique to group geospatial data possessing similar properties, characteristics to retrieve events or patterns of significance. This paper presents a comparative analysis of various algorithms on clustering and extensions of methods, conception, and their applications in various domains. The comparative analysis revels that the Density Peak Clustering algorithm has high accuracy on the IRIS dataset Finally, we present the research opportunities in spatial data clustering in the future enhancement section.","PeriodicalId":415594,"journal":{"name":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mining Intelligent Spatial Clustering Patterns: A Comparative Analysis of Different Approaches\",\"authors\":\"Swati Meshram, K. Wagh\",\"doi\":\"10.1109/INDIACom51348.2021.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spatial data is a collection of information about the geospatial location and its events or characteristics. These spatial data are collected from the various positioning techniques viz. Global Positioning System (GPS), remote sensing, mobile devices, etc. A large amount of easily available spatial data drives the need to effectively uncover useful and interesting patterns using machine learning algorithms like Clustering. Clustering is a technique to group geospatial data possessing similar properties, characteristics to retrieve events or patterns of significance. This paper presents a comparative analysis of various algorithms on clustering and extensions of methods, conception, and their applications in various domains. The comparative analysis revels that the Density Peak Clustering algorithm has high accuracy on the IRIS dataset Finally, we present the research opportunities in spatial data clustering in the future enhancement section.\",\"PeriodicalId\":415594,\"journal\":{\"name\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INDIACom51348.2021.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 8th International Conference on Computing for Sustainable Global Development (INDIACom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIACom51348.2021.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

空间数据是关于地理空间位置及其事件或特征的信息集合。这些空间数据是通过各种定位技术收集的,包括全球定位系统(GPS)、遥感、移动设备等。大量容易获得的空间数据推动了使用机器学习算法(如Clustering)有效地发现有用和有趣模式的需求。聚类是一种将具有相似属性、特征的地理空间数据分组以检索具有重要意义的事件或模式的技术。本文比较分析了各种聚类算法及其方法、概念的扩展,以及它们在各个领域的应用。对比分析表明,密度峰值聚类算法在IRIS数据集上具有较高的准确率。最后,本文提出了未来增强部分在空间数据聚类方面的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mining Intelligent Spatial Clustering Patterns: A Comparative Analysis of Different Approaches
Spatial data is a collection of information about the geospatial location and its events or characteristics. These spatial data are collected from the various positioning techniques viz. Global Positioning System (GPS), remote sensing, mobile devices, etc. A large amount of easily available spatial data drives the need to effectively uncover useful and interesting patterns using machine learning algorithms like Clustering. Clustering is a technique to group geospatial data possessing similar properties, characteristics to retrieve events or patterns of significance. This paper presents a comparative analysis of various algorithms on clustering and extensions of methods, conception, and their applications in various domains. The comparative analysis revels that the Density Peak Clustering algorithm has high accuracy on the IRIS dataset Finally, we present the research opportunities in spatial data clustering in the future enhancement section.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stochastic Scheduling of Parking Lot Operator in Energy and Regulation Markets amalgamating PBDR Social Synchrony: An Analytical Contemplation of Contemporary State of Art Frameworks The AI enabled Chatbot Framework for Intelligent Citizen-Government Interaction for Delivery of Services Biometric System - Challenges and Future Trends Solving SIS Epidemic Disease Model by Flower Pollination Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1