{"title":"雷达弱目标检测的神经网络方法","authors":"H. Weidong, Yu Wenxian, Guo Guirong","doi":"10.1109/NAECON.1994.332926","DOIUrl":null,"url":null,"abstract":"Because of the statistical nature nature of many types of clutter, a radar target detector must set a fairly high threshold in order to order to maintain a reasonable false-alarm rate. However, weak targets are usually missed for the above threshold detector. This paper presents an effective detector, which can be considered as a two-dimensional feature matching filter for radar signals. The feature extraction is performed by Hopfield neural networks and the feature integration is finished by a multilayer perceptron. In order to overcome the local optimum problem, a novel modification which is called energy comparing method is introduced into the Hopfield model dynamic equation to find the global optimum. By testing with the real radar return data in a low signal-to-clutter ratio, the detector presented in this paper has more advantages than the conventional threshold detector.<<ETX>>","PeriodicalId":281754,"journal":{"name":"Proceedings of National Aerospace and Electronics Conference (NAECON'94)","volume":"PP 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The neural network method for radar weak target detection\",\"authors\":\"H. Weidong, Yu Wenxian, Guo Guirong\",\"doi\":\"10.1109/NAECON.1994.332926\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Because of the statistical nature nature of many types of clutter, a radar target detector must set a fairly high threshold in order to order to maintain a reasonable false-alarm rate. However, weak targets are usually missed for the above threshold detector. This paper presents an effective detector, which can be considered as a two-dimensional feature matching filter for radar signals. The feature extraction is performed by Hopfield neural networks and the feature integration is finished by a multilayer perceptron. In order to overcome the local optimum problem, a novel modification which is called energy comparing method is introduced into the Hopfield model dynamic equation to find the global optimum. By testing with the real radar return data in a low signal-to-clutter ratio, the detector presented in this paper has more advantages than the conventional threshold detector.<<ETX>>\",\"PeriodicalId\":281754,\"journal\":{\"name\":\"Proceedings of National Aerospace and Electronics Conference (NAECON'94)\",\"volume\":\"PP 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of National Aerospace and Electronics Conference (NAECON'94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON.1994.332926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of National Aerospace and Electronics Conference (NAECON'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON.1994.332926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The neural network method for radar weak target detection
Because of the statistical nature nature of many types of clutter, a radar target detector must set a fairly high threshold in order to order to maintain a reasonable false-alarm rate. However, weak targets are usually missed for the above threshold detector. This paper presents an effective detector, which can be considered as a two-dimensional feature matching filter for radar signals. The feature extraction is performed by Hopfield neural networks and the feature integration is finished by a multilayer perceptron. In order to overcome the local optimum problem, a novel modification which is called energy comparing method is introduced into the Hopfield model dynamic equation to find the global optimum. By testing with the real radar return data in a low signal-to-clutter ratio, the detector presented in this paper has more advantages than the conventional threshold detector.<>