确定特立尼达成熟油田非混相CO2 EOR项目的可行性

Jonathan Ramnath, Elroi Felix, A. Shah, M. Soroush, Nykesi Omokughegbe, Francis Jaipaulsingh
{"title":"确定特立尼达成熟油田非混相CO2 EOR项目的可行性","authors":"Jonathan Ramnath, Elroi Felix, A. Shah, M. Soroush, Nykesi Omokughegbe, Francis Jaipaulsingh","doi":"10.2118/191220-MS","DOIUrl":null,"url":null,"abstract":"\n Decreasing oil production and increasing quantities of greenhouse gases continue to be an issue plaguing Trinidad and Tobago's energy sector. While CO2 EOR has been proven to be an effective solution to both of these problems it is often overlooked in Trinidad due to the inability of the gas to achieve miscibility with the crude oil as well as operational limitations such as an absence of transportation pipelines for the CO2.\n Even though miscibility may not be achieved, immiscible CO2 EOR can effectively increase production and sequester CO2 resulting in an increase of revenue as well as decreasing the quantity of greenhouse gases vented to the atmosphere. This paper aims to highlight the possibility of implementing immiscible CO2 projects in Trinidad. The scientific processes that are responsible for increased crude oil production are discussed and the operational considerations for a safe and economically feasible project in Trinidad South West fields are examined.\n It was seen that the vaporizing gas drive process would not result in miscibility in the shallow low pressure fields of the South West Trinidad however it would cause a significant reduction in the interfacial tension, this in turn causes an increase in the capillary number which would result in additional oil recovery. It was also found that the high viscosity of the non-carbonated oil of the region would result in an even greater reduction in viscosity when it is mixed with the CO2 gas resulting in more favourable oil mobility. The high solubility of CO2 in hydrocarbon liquids result in the swelling of crude oil. In the water wet formations, the oil within the pore spaces swells, resulting in an increase of relative permeability aiding in additional oil recovery.\n In the field evaluated, it is proposed that the CO2 be acquired from Atlantic LNG, tube trailers be used to transport the CO2, 100mmscf of gas injected per day with a 5spot injection pattern and the produced gas compressed and reinjected. From simulation this was found to produce an additional 389,360bbls of oil where CO2 would be sequestered and an additional profit of US$ 21,414,800 would be acquired within a 20 year period.","PeriodicalId":415543,"journal":{"name":"Day 2 Tue, June 26, 2018","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Determining the Feasibility of Immiscible CO2 EOR Projects in Trinidad's Mature Fields\",\"authors\":\"Jonathan Ramnath, Elroi Felix, A. Shah, M. Soroush, Nykesi Omokughegbe, Francis Jaipaulsingh\",\"doi\":\"10.2118/191220-MS\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Decreasing oil production and increasing quantities of greenhouse gases continue to be an issue plaguing Trinidad and Tobago's energy sector. While CO2 EOR has been proven to be an effective solution to both of these problems it is often overlooked in Trinidad due to the inability of the gas to achieve miscibility with the crude oil as well as operational limitations such as an absence of transportation pipelines for the CO2.\\n Even though miscibility may not be achieved, immiscible CO2 EOR can effectively increase production and sequester CO2 resulting in an increase of revenue as well as decreasing the quantity of greenhouse gases vented to the atmosphere. This paper aims to highlight the possibility of implementing immiscible CO2 projects in Trinidad. The scientific processes that are responsible for increased crude oil production are discussed and the operational considerations for a safe and economically feasible project in Trinidad South West fields are examined.\\n It was seen that the vaporizing gas drive process would not result in miscibility in the shallow low pressure fields of the South West Trinidad however it would cause a significant reduction in the interfacial tension, this in turn causes an increase in the capillary number which would result in additional oil recovery. It was also found that the high viscosity of the non-carbonated oil of the region would result in an even greater reduction in viscosity when it is mixed with the CO2 gas resulting in more favourable oil mobility. The high solubility of CO2 in hydrocarbon liquids result in the swelling of crude oil. In the water wet formations, the oil within the pore spaces swells, resulting in an increase of relative permeability aiding in additional oil recovery.\\n In the field evaluated, it is proposed that the CO2 be acquired from Atlantic LNG, tube trailers be used to transport the CO2, 100mmscf of gas injected per day with a 5spot injection pattern and the produced gas compressed and reinjected. From simulation this was found to produce an additional 389,360bbls of oil where CO2 would be sequestered and an additional profit of US$ 21,414,800 would be acquired within a 20 year period.\",\"PeriodicalId\":415543,\"journal\":{\"name\":\"Day 2 Tue, June 26, 2018\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Tue, June 26, 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/191220-MS\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, June 26, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191220-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

石油产量的减少和温室气体的增加仍然是困扰特立尼达和多巴哥能源部门的一个问题。虽然二氧化碳提高采收率已被证明是解决这两个问题的有效方法,但在特立尼达,由于天然气无法与原油混溶,以及缺乏二氧化碳运输管道等操作限制,常常被忽视。即使不能实现混相,但采用非混相CO2提高采收率可以有效地提高产量,封存CO2,从而增加收益,减少排放到大气中的温室气体量。本文旨在强调在特立尼达实施不混相二氧化碳项目的可能性。讨论了提高原油产量的科学过程,并审查了特立尼达西南油田安全、经济可行项目的操作考虑。结果表明,在特立尼达西南部浅层低压油田,气化气驱过程不会导致混相,但会导致界面张力显著降低,从而导致毛管数量增加,从而提高采收率。研究还发现,该地区非碳酸油的高粘度与二氧化碳气体混合后,粘度会有更大的降低,从而使油的流动性更有利。CO2在烃类液体中的高溶解度导致原油溶胀。在水湿地层中,孔隙空间内的油膨胀,导致相对渗透率增加,从而有助于额外的采收率。在现场评估中,建议从大西洋液化天然气公司获取二氧化碳,使用管道拖车运输二氧化碳,每天以5点注入模式注入100mmscf的天然气,并将产出的气体压缩并重新注入。从模拟中发现,这将产生额外的389,360桶石油,其中二氧化碳将被隔离,并在20年内获得额外的利润21,414,800美元。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determining the Feasibility of Immiscible CO2 EOR Projects in Trinidad's Mature Fields
Decreasing oil production and increasing quantities of greenhouse gases continue to be an issue plaguing Trinidad and Tobago's energy sector. While CO2 EOR has been proven to be an effective solution to both of these problems it is often overlooked in Trinidad due to the inability of the gas to achieve miscibility with the crude oil as well as operational limitations such as an absence of transportation pipelines for the CO2. Even though miscibility may not be achieved, immiscible CO2 EOR can effectively increase production and sequester CO2 resulting in an increase of revenue as well as decreasing the quantity of greenhouse gases vented to the atmosphere. This paper aims to highlight the possibility of implementing immiscible CO2 projects in Trinidad. The scientific processes that are responsible for increased crude oil production are discussed and the operational considerations for a safe and economically feasible project in Trinidad South West fields are examined. It was seen that the vaporizing gas drive process would not result in miscibility in the shallow low pressure fields of the South West Trinidad however it would cause a significant reduction in the interfacial tension, this in turn causes an increase in the capillary number which would result in additional oil recovery. It was also found that the high viscosity of the non-carbonated oil of the region would result in an even greater reduction in viscosity when it is mixed with the CO2 gas resulting in more favourable oil mobility. The high solubility of CO2 in hydrocarbon liquids result in the swelling of crude oil. In the water wet formations, the oil within the pore spaces swells, resulting in an increase of relative permeability aiding in additional oil recovery. In the field evaluated, it is proposed that the CO2 be acquired from Atlantic LNG, tube trailers be used to transport the CO2, 100mmscf of gas injected per day with a 5spot injection pattern and the produced gas compressed and reinjected. From simulation this was found to produce an additional 389,360bbls of oil where CO2 would be sequestered and an additional profit of US$ 21,414,800 would be acquired within a 20 year period.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization under Uncertainty for Reliable Unconventional Play Evaluation. A Case Study in Vaca Muerta Shale Gas Blocks, Argentina Stability Improvement of CO2 Foam for Enhanced Oil Recovery Applications Using Nanoparticles and Viscoelastic Surfactants Effect of Temperature, Phase Change, and Chemical Additive on Wettability Alteration During Steam Applications in Sands and Carbonates Application of the Capacitance Model in Primary Production Period before IOR Implementation Transient and Boundary Dominated Flow Temperature Analysis under Variable Rate Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1