{"title":"基于注意力的Bi-GRU在COVID-19大流行期间学生双语推文情感识别中的应用","authors":"I. Recto, Andrea Danelle P. Quilang, L. Vea","doi":"10.1109/IAICT55358.2022.9887389","DOIUrl":null,"url":null,"abstract":"This paper studied the emotions manifested by students from March 2020 to April 2021, a year of the Coronavirus Disease-2019 (COVID-19) pandemic. Our tweet compromises Taglish (Tagalog—English) texts, a low-resource code-switching language. The texts were cleaned and translated from Taglish to English. WordNet Affect was used to annotate the text with Happy, Angry, Sad, Surprise, and Fear as the output. A neural network, Bidirectional Gated Recurrent unit (Bi-GRU) with Attention layer, was used, and it was compared to Bernoulli Naïve Bayes (BNB) and Support Vector Machine (SVM), which are commonly used algorithms for Taglish emotion recognition. A 100-dimensional GloVe word embedding was applied to the data before training. The augmentation method does not affect the model’s performance negatively; instead has helped the Bi-GRU with Attention boost its performance. Bi-GRU with attention has a higher F1-score on all emotions compared to the other three algorithms but, as expected, requires a large amount of data. The results show that the most dominant emotion manifested by students throughout the year is surprise immediately followed by Sad and Fear. The three are close in values.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emotion Recognition of Students’ Bilingual Tweets during COVID-19 Pandemic using Attention-based Bi-GRU\",\"authors\":\"I. Recto, Andrea Danelle P. Quilang, L. Vea\",\"doi\":\"10.1109/IAICT55358.2022.9887389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studied the emotions manifested by students from March 2020 to April 2021, a year of the Coronavirus Disease-2019 (COVID-19) pandemic. Our tweet compromises Taglish (Tagalog—English) texts, a low-resource code-switching language. The texts were cleaned and translated from Taglish to English. WordNet Affect was used to annotate the text with Happy, Angry, Sad, Surprise, and Fear as the output. A neural network, Bidirectional Gated Recurrent unit (Bi-GRU) with Attention layer, was used, and it was compared to Bernoulli Naïve Bayes (BNB) and Support Vector Machine (SVM), which are commonly used algorithms for Taglish emotion recognition. A 100-dimensional GloVe word embedding was applied to the data before training. The augmentation method does not affect the model’s performance negatively; instead has helped the Bi-GRU with Attention boost its performance. Bi-GRU with attention has a higher F1-score on all emotions compared to the other three algorithms but, as expected, requires a large amount of data. The results show that the most dominant emotion manifested by students throughout the year is surprise immediately followed by Sad and Fear. The three are close in values.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究了2020年3月至2021年4月,即2019冠状病毒病(COVID-19)大流行的一年,学生的情绪表现。我们的推文妥协了Taglish(塔加洛语-英语)文本,这是一种资源较少的代码转换语言。这些文本被清理干净并从塔利英语翻译成英语。使用WordNet Affect以Happy, Angry, Sad, Surprise, and Fear作为输出对文本进行注释。采用具有注意层的双向门控循环单元(Bidirectional Gated Recurrent unit, Bi-GRU)神经网络,并与常用的塔格英语情感识别算法Bernoulli Naïve Bayes (BNB)和支持向量机(SVM)进行比较。在训练前对数据进行100维GloVe词嵌入。增强方法对模型的性能没有负面影响;反而帮助Bi-GRU提高了它的性能。与其他三种算法相比,带有注意力的Bi-GRU在所有情绪上都有更高的f1分,但正如预期的那样,它需要大量的数据。结果显示,学生全年表现出的最主要情绪是惊讶,其次是悲伤和恐惧。这三者的价值相近。
Emotion Recognition of Students’ Bilingual Tweets during COVID-19 Pandemic using Attention-based Bi-GRU
This paper studied the emotions manifested by students from March 2020 to April 2021, a year of the Coronavirus Disease-2019 (COVID-19) pandemic. Our tweet compromises Taglish (Tagalog—English) texts, a low-resource code-switching language. The texts were cleaned and translated from Taglish to English. WordNet Affect was used to annotate the text with Happy, Angry, Sad, Surprise, and Fear as the output. A neural network, Bidirectional Gated Recurrent unit (Bi-GRU) with Attention layer, was used, and it was compared to Bernoulli Naïve Bayes (BNB) and Support Vector Machine (SVM), which are commonly used algorithms for Taglish emotion recognition. A 100-dimensional GloVe word embedding was applied to the data before training. The augmentation method does not affect the model’s performance negatively; instead has helped the Bi-GRU with Attention boost its performance. Bi-GRU with attention has a higher F1-score on all emotions compared to the other three algorithms but, as expected, requires a large amount of data. The results show that the most dominant emotion manifested by students throughout the year is surprise immediately followed by Sad and Fear. The three are close in values.