基于收缩阵列的参数化计算模块生成器

V. V. Zunin, I. Romanova
{"title":"基于收缩阵列的参数化计算模块生成器","authors":"V. V. Zunin, I. Romanova","doi":"10.1109/IAICT55358.2022.9887460","DOIUrl":null,"url":null,"abstract":"In this paper, the use of systolic arrays for data processing in the training or executing neural networks is explored. Two types of systolic arrays were developed, and a comparison on spending resources (ALM) and result calculation time was made. The comparison was conducted with two variable parameters of the input matrices: the number of rows of the first matrix and the number of columns of the second matrix. It is shown that (depending on the available resources) one of the methods for calculating the result can be used to synthesize the systolic array module: 1) to generate a systolic array of a given size and multiply matrices in which the first of them does not exceed the array size; 2) to synthesize a systolic array of a limited size and perform the multiplication of two matrices using the “Divide-and-Conquer” algorithm.","PeriodicalId":154027,"journal":{"name":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Parameterized Computing Module Generator Based on a Systolic Array\",\"authors\":\"V. V. Zunin, I. Romanova\",\"doi\":\"10.1109/IAICT55358.2022.9887460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the use of systolic arrays for data processing in the training or executing neural networks is explored. Two types of systolic arrays were developed, and a comparison on spending resources (ALM) and result calculation time was made. The comparison was conducted with two variable parameters of the input matrices: the number of rows of the first matrix and the number of columns of the second matrix. It is shown that (depending on the available resources) one of the methods for calculating the result can be used to synthesize the systolic array module: 1) to generate a systolic array of a given size and multiply matrices in which the first of them does not exceed the array size; 2) to synthesize a systolic array of a limited size and perform the multiplication of two matrices using the “Divide-and-Conquer” algorithm.\",\"PeriodicalId\":154027,\"journal\":{\"name\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IAICT55358.2022.9887460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Industry 4.0, Artificial Intelligence, and Communications Technology (IAICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAICT55358.2022.9887460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文探讨了在训练或执行神经网络中使用收缩数组进行数据处理。研制了两种收缩阵列,并对消耗资源(ALM)和结果计算时间进行了比较。用输入矩阵的两个可变参数:第一个矩阵的行数和第二个矩阵的列数进行比较。结果表明,(根据可用资源)计算结果的方法之一可用于合成收缩数组模块:1)生成给定大小的收缩数组,并将其中第一个不超过数组大小的矩阵相乘;2)合成一个有限大小的收缩数组,并使用“分治”算法对两个矩阵进行乘法运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameterized Computing Module Generator Based on a Systolic Array
In this paper, the use of systolic arrays for data processing in the training or executing neural networks is explored. Two types of systolic arrays were developed, and a comparison on spending resources (ALM) and result calculation time was made. The comparison was conducted with two variable parameters of the input matrices: the number of rows of the first matrix and the number of columns of the second matrix. It is shown that (depending on the available resources) one of the methods for calculating the result can be used to synthesize the systolic array module: 1) to generate a systolic array of a given size and multiply matrices in which the first of them does not exceed the array size; 2) to synthesize a systolic array of a limited size and perform the multiplication of two matrices using the “Divide-and-Conquer” algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of Machine Learning Approaches for Detecting Depression Using Smartphone Data Design of a Personal Digital Assistant for the Visually Challenged AutoSW: a new automated sliding window-based change point detection method for sensor data DOTA 2 Win Loss Prediction from Item and Hero Data with Machine Learning Hardware Realization of Sigmoid and Hyperbolic Tangent Activation Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1