基于k均值聚类的水下无线传感器网络误差信标滤波算法

Linfeng Liu, Jinglin Du, Dongyue Guo
{"title":"基于k均值聚类的水下无线传感器网络误差信标滤波算法","authors":"Linfeng Liu, Jinglin Du, Dongyue Guo","doi":"10.1109/ICCSN.2016.7587196","DOIUrl":null,"url":null,"abstract":"Due to the highly hostile and unpredictable underwater environments, some beacon nodes in Underwater Wireless Sensor Networks (UWSNs) tend to move or be damaged. Therefore, the unknown nodes will be positioned with larger error, which abases the value of data collected by sensor nodes. In order to solve the beacon error problem, this paper proposes an error beacon filtering algorithm based on K-means clustering. Firstly, the position of each beacon is calculated by an improved trilateration method, and then the beacon with the maximum positioning error is filtered out through K-means clustering algorithm. Simulation results suggest that this algorithm can detect almost all error beacons effectively.","PeriodicalId":158877,"journal":{"name":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Error beacon filtering algorithm based on K-means clustering for underwater Wireless Sensor Networks\",\"authors\":\"Linfeng Liu, Jinglin Du, Dongyue Guo\",\"doi\":\"10.1109/ICCSN.2016.7587196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the highly hostile and unpredictable underwater environments, some beacon nodes in Underwater Wireless Sensor Networks (UWSNs) tend to move or be damaged. Therefore, the unknown nodes will be positioned with larger error, which abases the value of data collected by sensor nodes. In order to solve the beacon error problem, this paper proposes an error beacon filtering algorithm based on K-means clustering. Firstly, the position of each beacon is calculated by an improved trilateration method, and then the beacon with the maximum positioning error is filtered out through K-means clustering algorithm. Simulation results suggest that this algorithm can detect almost all error beacons effectively.\",\"PeriodicalId\":158877,\"journal\":{\"name\":\"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSN.2016.7587196\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th IEEE International Conference on Communication Software and Networks (ICCSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSN.2016.7587196","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

由于水下环境的恶劣和不可预测,水下无线传感器网络(UWSNs)中的一些信标节点容易移动或损坏。因此,未知节点的定位误差较大,降低了传感器节点采集数据的价值。为了解决信标误差问题,本文提出了一种基于k均值聚类的信标误差滤波算法。首先,采用改进的三边法计算每个信标的位置,然后通过K-means聚类算法过滤出定位误差最大的信标。仿真结果表明,该算法可以有效地检测出几乎所有的错误信标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Error beacon filtering algorithm based on K-means clustering for underwater Wireless Sensor Networks
Due to the highly hostile and unpredictable underwater environments, some beacon nodes in Underwater Wireless Sensor Networks (UWSNs) tend to move or be damaged. Therefore, the unknown nodes will be positioned with larger error, which abases the value of data collected by sensor nodes. In order to solve the beacon error problem, this paper proposes an error beacon filtering algorithm based on K-means clustering. Firstly, the position of each beacon is calculated by an improved trilateration method, and then the beacon with the maximum positioning error is filtered out through K-means clustering algorithm. Simulation results suggest that this algorithm can detect almost all error beacons effectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting sports fatigue from speech by support vector machine Error beacon filtering algorithm based on K-means clustering for underwater Wireless Sensor Networks Transmit beamforming optimization for energy efficiency maximization in downlink distributed antenna systems Research of 3D face recognition algorithm based on deep learning stacked denoising autoencoder theory Improved propagator method for joint angle and Doppler estimation based on structured least squares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1