用于海洋生态系统声传感的鱼群自动分类

R. Lefort, Ronan Fablet, J. Boucher, L. Berger, S. Bourguignon
{"title":"用于海洋生态系统声传感的鱼群自动分类","authors":"R. Lefort, Ronan Fablet, J. Boucher, L. Berger, S. Bourguignon","doi":"10.1109/OCEANS.2008.5151941","DOIUrl":null,"url":null,"abstract":"With the human demand for fish and the global warming effects, we know that marine populations are changing. Developing methods for observing and analyzing the spatio-temporal variations of marine ecosystems is then of primary importance. In this context, underwater acoustics remote sensing has a great potential. Operational systems mainly rely on expert interpretation of echograms acquired by sonar echosounders. In this works, we propose new algorithms for the analysis of acoustic survey regarding the inference of species mixing proportion. They rely on the definition and training of probabilistic school classification models from survey data.","PeriodicalId":113677,"journal":{"name":"OCEANS 2008","volume":"229 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic fish school classification for acoustic sensing of marine ecosystem\",\"authors\":\"R. Lefort, Ronan Fablet, J. Boucher, L. Berger, S. Bourguignon\",\"doi\":\"10.1109/OCEANS.2008.5151941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the human demand for fish and the global warming effects, we know that marine populations are changing. Developing methods for observing and analyzing the spatio-temporal variations of marine ecosystems is then of primary importance. In this context, underwater acoustics remote sensing has a great potential. Operational systems mainly rely on expert interpretation of echograms acquired by sonar echosounders. In this works, we propose new algorithms for the analysis of acoustic survey regarding the inference of species mixing proportion. They rely on the definition and training of probabilistic school classification models from survey data.\",\"PeriodicalId\":113677,\"journal\":{\"name\":\"OCEANS 2008\",\"volume\":\"229 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OCEANS 2008\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/OCEANS.2008.5151941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OCEANS 2008","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANS.2008.5151941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着人类对鱼类的需求和全球变暖的影响,我们知道海洋种群正在发生变化。因此,发展观测和分析海洋生态系统时空变化的方法至关重要。在此背景下,水声遥感具有很大的发展潜力。操作系统主要依赖于对声纳回声探测仪获得的回声图的专家解释。本文提出了基于物种混合比例推断的声学测量分析新算法。他们依赖于从调查数据中定义和训练概率学校分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic fish school classification for acoustic sensing of marine ecosystem
With the human demand for fish and the global warming effects, we know that marine populations are changing. Developing methods for observing and analyzing the spatio-temporal variations of marine ecosystems is then of primary importance. In this context, underwater acoustics remote sensing has a great potential. Operational systems mainly rely on expert interpretation of echograms acquired by sonar echosounders. In this works, we propose new algorithms for the analysis of acoustic survey regarding the inference of species mixing proportion. They rely on the definition and training of probabilistic school classification models from survey data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Diving behavior of female loggerhead turtles (Caretta caretta) during their internesting interval and an evaluation of the risk of boat strikes Variability of observed reverberation and estimated sea-floor scattering strength 3-D motion and structure estimation for arbitrary scenes from 2-D optical and sonar video AUV measurements of under-ice thermal structure Marine Broadband Framework for coastal fishings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1