基于机器学习的微睡眠检测新方法

Xuebin Zhu, Zhoulin Wang, Zhenghong Yu, Ying-Jia Lin, Haijie Feng
{"title":"基于机器学习的微睡眠检测新方法","authors":"Xuebin Zhu, Zhoulin Wang, Zhenghong Yu, Ying-Jia Lin, Haijie Feng","doi":"10.1117/12.2682363","DOIUrl":null,"url":null,"abstract":"This article presents a machine learning-based method for detecting micro-sleep. The method is simple, efficient, and can be applied in practical scenarios without the need for large-scale equipment such as servers. We recorded the physiological characteristics of 16 young adults in a driving simulation laboratory, mainly consisting of electroencephalogram (EEG) and driver behaviour videos, and used machine learning to detect micro-sleep events. We compared different machine learning algorithms (SVM, KNN, ANN) and ultimately adopted a combination of ANN and SVM algorithms (pre-processing small-scale data), which reduced the recognition error rate from an initial 4.5% to 0.2%. This combination accelerated the recognition speed and improved the accuracy, making it a practical approach.","PeriodicalId":440430,"journal":{"name":"International Conference on Electronic Technology and Information Science","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new and efficient method for detecting micro-sleep based on machine learning\",\"authors\":\"Xuebin Zhu, Zhoulin Wang, Zhenghong Yu, Ying-Jia Lin, Haijie Feng\",\"doi\":\"10.1117/12.2682363\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a machine learning-based method for detecting micro-sleep. The method is simple, efficient, and can be applied in practical scenarios without the need for large-scale equipment such as servers. We recorded the physiological characteristics of 16 young adults in a driving simulation laboratory, mainly consisting of electroencephalogram (EEG) and driver behaviour videos, and used machine learning to detect micro-sleep events. We compared different machine learning algorithms (SVM, KNN, ANN) and ultimately adopted a combination of ANN and SVM algorithms (pre-processing small-scale data), which reduced the recognition error rate from an initial 4.5% to 0.2%. This combination accelerated the recognition speed and improved the accuracy, making it a practical approach.\",\"PeriodicalId\":440430,\"journal\":{\"name\":\"International Conference on Electronic Technology and Information Science\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Electronic Technology and Information Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2682363\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Electronic Technology and Information Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2682363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种基于机器学习的微睡眠检测方法。该方法简单、高效,无需服务器等大型设备,可应用于实际场景。我们在驾驶模拟实验室中记录了16名年轻人的生理特征,主要包括脑电图(EEG)和驾驶行为视频,并利用机器学习检测微睡眠事件。我们比较了不同的机器学习算法(SVM, KNN, ANN),最终采用了ANN和SVM算法的组合(预处理小规模数据),将识别错误率从最初的4.5%降低到0.2%。这种组合加快了识别速度,提高了识别精度,是一种实用的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new and efficient method for detecting micro-sleep based on machine learning
This article presents a machine learning-based method for detecting micro-sleep. The method is simple, efficient, and can be applied in practical scenarios without the need for large-scale equipment such as servers. We recorded the physiological characteristics of 16 young adults in a driving simulation laboratory, mainly consisting of electroencephalogram (EEG) and driver behaviour videos, and used machine learning to detect micro-sleep events. We compared different machine learning algorithms (SVM, KNN, ANN) and ultimately adopted a combination of ANN and SVM algorithms (pre-processing small-scale data), which reduced the recognition error rate from an initial 4.5% to 0.2%. This combination accelerated the recognition speed and improved the accuracy, making it a practical approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Network traffic classification based on multi-head attention and deep metric learning A study of regional precipitation data fusion model based on BP-LSTM in Qinghai province Design and application of an intelligent monitoring and early warning system for bioremediation of coking contaminated sites Research on improved adaptive spectrum access mechanism for millimetre wave Unloading optimization of networked vehicles based on improved genetic and particle swarm optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1