R. Zebulum, C. C. Santini, H. T. Sinohara, M. Pacheco, M. Vellasco, M. H. Szwarcman
{"title":"用于模拟电路自动合成的可重构平台","authors":"R. Zebulum, C. C. Santini, H. T. Sinohara, M. Pacheco, M. Vellasco, M. H. Szwarcman","doi":"10.1109/EH.2000.869346","DOIUrl":null,"url":null,"abstract":"Reconfigurable chips are integrated circuits whose internal connections can be programmed by the user to attend a specific application. Field Programmable Gate Arrays (FPGAs) and Field Programmable Analog Arrays (FPAAs) constitute the state of the art in the technology of reconfigurable chips, referring to digital and analog devices respectively. These devices will become the building blocks of a forthcoming class of hardware, with the important features of self-adaptation and self-repairing, through automatic reconfiguration. These are essential features for systems that need to perform for a long time in harsh environments such as those employed in space exploration missions. Automatic reconfiguration of field programmable devices may potentially be driven by Evolutionary Computation techniques such as Generic Algorithms. FPAAs have just recently appeared, and most projects are being carried out in universities and research centers. In this article we propose a new model of reconfigurable analog circuit and describe its application in the intrinsic evolution of a simple logic inverter.","PeriodicalId":432338,"journal":{"name":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":"{\"title\":\"A reconfigurable platform for the automatic synthesis of analog circuits\",\"authors\":\"R. Zebulum, C. C. Santini, H. T. Sinohara, M. Pacheco, M. Vellasco, M. H. Szwarcman\",\"doi\":\"10.1109/EH.2000.869346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reconfigurable chips are integrated circuits whose internal connections can be programmed by the user to attend a specific application. Field Programmable Gate Arrays (FPGAs) and Field Programmable Analog Arrays (FPAAs) constitute the state of the art in the technology of reconfigurable chips, referring to digital and analog devices respectively. These devices will become the building blocks of a forthcoming class of hardware, with the important features of self-adaptation and self-repairing, through automatic reconfiguration. These are essential features for systems that need to perform for a long time in harsh environments such as those employed in space exploration missions. Automatic reconfiguration of field programmable devices may potentially be driven by Evolutionary Computation techniques such as Generic Algorithms. FPAAs have just recently appeared, and most projects are being carried out in universities and research centers. In this article we propose a new model of reconfigurable analog circuit and describe its application in the intrinsic evolution of a simple logic inverter.\",\"PeriodicalId\":432338,\"journal\":{\"name\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"29\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EH.2000.869346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The Second NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.2000.869346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A reconfigurable platform for the automatic synthesis of analog circuits
Reconfigurable chips are integrated circuits whose internal connections can be programmed by the user to attend a specific application. Field Programmable Gate Arrays (FPGAs) and Field Programmable Analog Arrays (FPAAs) constitute the state of the art in the technology of reconfigurable chips, referring to digital and analog devices respectively. These devices will become the building blocks of a forthcoming class of hardware, with the important features of self-adaptation and self-repairing, through automatic reconfiguration. These are essential features for systems that need to perform for a long time in harsh environments such as those employed in space exploration missions. Automatic reconfiguration of field programmable devices may potentially be driven by Evolutionary Computation techniques such as Generic Algorithms. FPAAs have just recently appeared, and most projects are being carried out in universities and research centers. In this article we propose a new model of reconfigurable analog circuit and describe its application in the intrinsic evolution of a simple logic inverter.