在最先进的CNN架构上深度学习地震相

J. Dramsch, M. Lüthje
{"title":"在最先进的CNN架构上深度学习地震相","authors":"J. Dramsch, M. Lüthje","doi":"10.1190/SEGAM2018-2996783.1","DOIUrl":null,"url":null,"abstract":"In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.","PeriodicalId":158800,"journal":{"name":"SEG Technical Program Expanded Abstracts 2018","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"74","resultStr":"{\"title\":\"Deep-learning seismic facies on state-of-the-art CNN architectures\",\"authors\":\"J. Dramsch, M. Lüthje\",\"doi\":\"10.1190/SEGAM2018-2996783.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.\",\"PeriodicalId\":158800,\"journal\":{\"name\":\"SEG Technical Program Expanded Abstracts 2018\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"74\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SEG Technical Program Expanded Abstracts 2018\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/SEGAM2018-2996783.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SEG Technical Program Expanded Abstracts 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/SEGAM2018-2996783.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 74

摘要

在20世纪50年代,神经网络开始作为输入层的几个节点与输出层的几个节点的简单直接连接(Widrow和Lehr, 1990)。在地球物理学中,这使我们引入了地震道叠加(Yilmaz, 2001)。1989年,卷积神经网络的第一个想法诞生了(Lecun, 1989),反向传播被形式化为一种错误传播机制(Rumelhart et al., 1988)。2012年,该论文(Krizhevsky et al., 2012)推动了深度学习领域向前发展,实现了基本组件,即GPU训练、ReLu激活函数(Dahl et al., 2013)和dropout (Srivastava et al., 2014)。它们在ImageNet挑战中的表现优于以前的模型(Deng et al., 2009),预测误差几乎减半。Waldeland and Solberg(2016)表明,神经网络可以用于对三维地震数据中的盐底辟进行分类。Charles Rutherford Ildstad(2017)将这项工作推广到nD和两类盐和“其他”之外。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep-learning seismic facies on state-of-the-art CNN architectures
In the 1950s neural networks started as a simple direct connection of several nodes in an input layer to several nodes in an output layer (Widrow and Lehr, 1990). In geophysics this puts us to the introduction of seismic trace stacking (Yilmaz, 2001). In 1989 the first idea of a convolutional neural network was born (Lecun, 1989) and back-propagation was formalized as an error-propagation mechanism (Rumelhart et al., 1988). In 2012 the paper (Krizhevsky et al., 2012) propelled the field of deep learning forward implementing essential components, namely GPU training, ReLu activation functions (Dahl et al., 2013) and dropout (Srivastava et al., 2014). They outperformed previous models in the ImageNet challenge (Deng et al., 2009) by almost halving the prediction error. Waldeland and Solberg (2016) showed that neural networks can be used to classify salt diapirs in 3D seismic data. Charles Rutherford Ildstad (2017) generalized this work to nD and beyond two classes of salt and ”else”.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Causality-constrained model-independent joint migration inversion Viscoacoustic forward-modeling method for irregular surface topography based on a second-order viscoacoustic quasidifferential equation without memory variables Influence of the internal geometry on the elastic properties of materials using 3D printing of computer-generated random microstructures Combining 3D HR and OBC datasets to increase bandwidth, signal-to-noise and resolution Identification and evaluation of groundwater resources for small rural and aboriginal communities in Chaco, Argentina
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1