David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi
{"title":"增材制造的聚合物复合热交换器中增强的空气侧传热","authors":"David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi","doi":"10.1109/ITHERM.2017.7992546","DOIUrl":null,"url":null,"abstract":"The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.","PeriodicalId":387542,"journal":{"name":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Enhanced air-side heat transfer in an additively manufactured polymer composite heat exchanger\",\"authors\":\"David M. Hymas, Martinus A. Arle, Farah Singer, A. Shooshtari, M. Ohadi\",\"doi\":\"10.1109/ITHERM.2017.7992546\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.\",\"PeriodicalId\":387542,\"journal\":{\"name\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITHERM.2017.7992546\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITHERM.2017.7992546","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Enhanced air-side heat transfer in an additively manufactured polymer composite heat exchanger
The present study builds upon our prior work in integrating additive manufacturing into next-generation heat/mass exchanger devices. In this paper, we will report an analysis of the fabrication, testing, and performance of an additively manufactured polymer composite heat exchanger. This heat exchanger utilizes a novel approach to achieve enhanced air-side heat transfer coefficients and overall mass reduction. This device relies on the Cross-Media Fiber concept where two fluid flows are thermally linked by high-conductivity fins, passing through a low-conductivity channel wall. Through this, the authors have met the required pressure containment, coefficient of performance, and heat flow rate targets, which were 28 psig, 100 and 150 W respectively. The advances that are discussed throughout this paper have allowed this novel polymer composite heat exchanger to be produced through a newly developed form of additive manufacturing that can potentially lead to the economical production of large scale Cross-Media Fiber heat exchangers.