Dong-xu Yang, Hongfei Zhang, Yi Feng, Q. Tang, Teng-Yun Chen, Jian Wang
{"title":"基于FPGA的高频窄激光脉冲能量测量方法","authors":"Dong-xu Yang, Hongfei Zhang, Yi Feng, Q. Tang, Teng-Yun Chen, Jian Wang","doi":"10.1109/RTC.2016.7543071","DOIUrl":null,"url":null,"abstract":"An energy measurement method used for high-frequency narrow laser pulses based on a high performance field-programmable gate array (FPGA) chip is introduced in this paper. There are two parts contained in this method: signal conditioning and data processing. The signal conditioning part will transform the incident narrow laser pulse to electrical signal which has an appropriate width and the amplitude is linear to the energy of the laser pulse. The electrical signal will be digitalized by a high speed ADC and input to the FPGA chip in the data processing part. The amplitude of the electrical signal will be obtained by real-time calculations in the FPGA. The test result shows that the method is suitable for the laser pulse with FWHW low level with 200ps and frequency up to 20MHz.","PeriodicalId":383702,"journal":{"name":"2016 IEEE-NPSS Real Time Conference (RT)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An energy measurement method of high-frequency narrow laser pulse based on FPGA\",\"authors\":\"Dong-xu Yang, Hongfei Zhang, Yi Feng, Q. Tang, Teng-Yun Chen, Jian Wang\",\"doi\":\"10.1109/RTC.2016.7543071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An energy measurement method used for high-frequency narrow laser pulses based on a high performance field-programmable gate array (FPGA) chip is introduced in this paper. There are two parts contained in this method: signal conditioning and data processing. The signal conditioning part will transform the incident narrow laser pulse to electrical signal which has an appropriate width and the amplitude is linear to the energy of the laser pulse. The electrical signal will be digitalized by a high speed ADC and input to the FPGA chip in the data processing part. The amplitude of the electrical signal will be obtained by real-time calculations in the FPGA. The test result shows that the method is suitable for the laser pulse with FWHW low level with 200ps and frequency up to 20MHz.\",\"PeriodicalId\":383702,\"journal\":{\"name\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE-NPSS Real Time Conference (RT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTC.2016.7543071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE-NPSS Real Time Conference (RT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTC.2016.7543071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An energy measurement method of high-frequency narrow laser pulse based on FPGA
An energy measurement method used for high-frequency narrow laser pulses based on a high performance field-programmable gate array (FPGA) chip is introduced in this paper. There are two parts contained in this method: signal conditioning and data processing. The signal conditioning part will transform the incident narrow laser pulse to electrical signal which has an appropriate width and the amplitude is linear to the energy of the laser pulse. The electrical signal will be digitalized by a high speed ADC and input to the FPGA chip in the data processing part. The amplitude of the electrical signal will be obtained by real-time calculations in the FPGA. The test result shows that the method is suitable for the laser pulse with FWHW low level with 200ps and frequency up to 20MHz.