图像聚类的无监督模糊神经网络

Yifan Wang, H. Ishibuchi, Jihua Zhu, Yaxiong Wang, Tao Dai
{"title":"图像聚类的无监督模糊神经网络","authors":"Yifan Wang, H. Ishibuchi, Jihua Zhu, Yaxiong Wang, Tao Dai","doi":"10.1109/FUZZ45933.2021.9494601","DOIUrl":null,"url":null,"abstract":"Fuzzy systems have proven to be an effective tool for classification and regression. However, they have been mainly applied to supervised tasks. In this paper, we extend fuzzy systems to tackle unsupervised problems based on the manifold regularization framework and convolution/pooling technologies. The proposed fuzzy system, referred to as the unsupervised fuzzy neural network, can extract features from raw images accurately and perform well on image clustering. The main structure of the proposed approach is divided into three parts: fuzzy mapping, unsupervised feature extraction and manifold representation. We adopt K-means to perform clustering in the low-dimensional manifold space. Experimental results on image datasets demonstrate that our approach is competitive with classical and state-of-the-art algorithms. We also identify the relative contributions of each component of the proposed approach in experiments.","PeriodicalId":151289,"journal":{"name":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised Fuzzy Neural Network for Image Clustering\",\"authors\":\"Yifan Wang, H. Ishibuchi, Jihua Zhu, Yaxiong Wang, Tao Dai\",\"doi\":\"10.1109/FUZZ45933.2021.9494601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy systems have proven to be an effective tool for classification and regression. However, they have been mainly applied to supervised tasks. In this paper, we extend fuzzy systems to tackle unsupervised problems based on the manifold regularization framework and convolution/pooling technologies. The proposed fuzzy system, referred to as the unsupervised fuzzy neural network, can extract features from raw images accurately and perform well on image clustering. The main structure of the proposed approach is divided into three parts: fuzzy mapping, unsupervised feature extraction and manifold representation. We adopt K-means to perform clustering in the low-dimensional manifold space. Experimental results on image datasets demonstrate that our approach is competitive with classical and state-of-the-art algorithms. We also identify the relative contributions of each component of the proposed approach in experiments.\",\"PeriodicalId\":151289,\"journal\":{\"name\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ45933.2021.9494601\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ45933.2021.9494601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

模糊系统已被证明是一种有效的分类和回归工具。然而,它们主要应用于有监督的任务。本文基于流形正则化框架和卷积/池化技术,将模糊系统扩展到无监督问题。所提出的模糊系统被称为无监督模糊神经网络,可以准确地从原始图像中提取特征,并且在图像聚类方面表现良好。该方法的主要结构分为三个部分:模糊映射、无监督特征提取和流形表示。我们采用K-means在低维流形空间中进行聚类。在图像数据集上的实验结果表明,我们的方法与经典和最先进的算法相比具有竞争力。我们还确定了在实验中提出的方法的每个组成部分的相对贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised Fuzzy Neural Network for Image Clustering
Fuzzy systems have proven to be an effective tool for classification and regression. However, they have been mainly applied to supervised tasks. In this paper, we extend fuzzy systems to tackle unsupervised problems based on the manifold regularization framework and convolution/pooling technologies. The proposed fuzzy system, referred to as the unsupervised fuzzy neural network, can extract features from raw images accurately and perform well on image clustering. The main structure of the proposed approach is divided into three parts: fuzzy mapping, unsupervised feature extraction and manifold representation. We adopt K-means to perform clustering in the low-dimensional manifold space. Experimental results on image datasets demonstrate that our approach is competitive with classical and state-of-the-art algorithms. We also identify the relative contributions of each component of the proposed approach in experiments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
XAI Models for Quality of Experience Prediction in Wireless Networks Application of the Fuzzy Logic to Evaluation and Selection of Attribute Ranges in Machine Learning Kernel-Based k-Representatives Algorithm for Fuzzy Clustering of Categorical Data Necessary and sufficient condition for the existence of Atanassov's Intuitionistic Fuzzy based additive definite integral Identifying and Rectifying Rational Gaps in Fuzzy Rule Based Systems for Regression Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1