{"title":"论物联网分布式账本技术的公平性","authors":"Luigi Vigneri, W. Welz","doi":"10.1109/ICBC48266.2020.9169465","DOIUrl":null,"url":null,"abstract":"Distributed networks have been widely studied in literature. However, the blockchain paradigm has inspired to revisit some of the results under a different point of view. In this paper, we analyze the \"classic\" spam protection problem applied to the IOTA Tangle, a distributed ledger technology which addresses Bitcoin’s (monetary and energy) efficiency issues through the absence of mining pools. However, the lack of miners makes the network vulnerable to denial of service attacks. We propose an anti spam mechanism based on the solution of a cryptographic puzzle: When a node wants to generate a new transaction, it dynamically adapts the difficulty of the puzzle depending on its target throughput and on its reputation score. Specifically, the adaptive difficulty property guarantees that any node, even with low hashing power, can achieve similar throughput for a given reputation. In the paper, we prove this claim both analytically and through simulations, and we show that fairness between low- and high-power nodes is indeed reached.","PeriodicalId":420845,"journal":{"name":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"On the Fairness of Distributed Ledger Technologies for the Internet of Things\",\"authors\":\"Luigi Vigneri, W. Welz\",\"doi\":\"10.1109/ICBC48266.2020.9169465\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Distributed networks have been widely studied in literature. However, the blockchain paradigm has inspired to revisit some of the results under a different point of view. In this paper, we analyze the \\\"classic\\\" spam protection problem applied to the IOTA Tangle, a distributed ledger technology which addresses Bitcoin’s (monetary and energy) efficiency issues through the absence of mining pools. However, the lack of miners makes the network vulnerable to denial of service attacks. We propose an anti spam mechanism based on the solution of a cryptographic puzzle: When a node wants to generate a new transaction, it dynamically adapts the difficulty of the puzzle depending on its target throughput and on its reputation score. Specifically, the adaptive difficulty property guarantees that any node, even with low hashing power, can achieve similar throughput for a given reputation. In the paper, we prove this claim both analytically and through simulations, and we show that fairness between low- and high-power nodes is indeed reached.\",\"PeriodicalId\":420845,\"journal\":{\"name\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBC48266.2020.9169465\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBC48266.2020.9169465","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the Fairness of Distributed Ledger Technologies for the Internet of Things
Distributed networks have been widely studied in literature. However, the blockchain paradigm has inspired to revisit some of the results under a different point of view. In this paper, we analyze the "classic" spam protection problem applied to the IOTA Tangle, a distributed ledger technology which addresses Bitcoin’s (monetary and energy) efficiency issues through the absence of mining pools. However, the lack of miners makes the network vulnerable to denial of service attacks. We propose an anti spam mechanism based on the solution of a cryptographic puzzle: When a node wants to generate a new transaction, it dynamically adapts the difficulty of the puzzle depending on its target throughput and on its reputation score. Specifically, the adaptive difficulty property guarantees that any node, even with low hashing power, can achieve similar throughput for a given reputation. In the paper, we prove this claim both analytically and through simulations, and we show that fairness between low- and high-power nodes is indeed reached.