量子技术大规模集成超导路由平台

C. Thomas, J. Michel, E. Deschaseaux, J. Charbonnier, R. Souil, E. Vermande, Alain Campo, T. Farjot, G. Rodriguez, G. Romano, Frederico Gustavo, B. Jadot, V. Thiney, Y. Thonnart, G. Billiot, T. Meunier, M. Vinet
{"title":"量子技术大规模集成超导路由平台","authors":"C. Thomas, J. Michel, E. Deschaseaux, J. Charbonnier, R. Souil, E. Vermande, Alain Campo, T. Farjot, G. Rodriguez, G. Romano, Frederico Gustavo, B. Jadot, V. Thiney, Y. Thonnart, G. Billiot, T. Meunier, M. Vinet","doi":"10.1088/2633-4356/ac88ae","DOIUrl":null,"url":null,"abstract":"\n To reach large-scale quantum computing, three-dimensional integration of scalable qubit arrays and their control electronics in multi-chip assemblies is promising. Within these assemblies, the use of superconducting interconnections, as routing layers, offers interesting perspective in terms of (1) thermal management to protect the qubits from control electronics self-heating, (2) passive device performance with significant increase of quality factors and (3) density rise of low and high frequency signals thanks to minimal dispersion. We report on the fabrication, using 200 mm silicon wafer technologies, of a multi-layer routing platform designed for the hybridation of spin qubit and control electronics chips. A routing level couples the qubits and the control circuits through one layer of Al0.995Cu0.005 and superconducting layers of TiN, Nb or NbN, connected between them by W-based vias. Wafer-level parametric tests at 300 K validate the yield of these technologies while low temperature electrical measurements in cryostat are used to extract the superconducting properties of the routing layers. Preliminary low temperature radio-frequency characterizations of superconducting passive elements, embedded in these routing levels, are presented.","PeriodicalId":345750,"journal":{"name":"Materials for Quantum Technology","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Superconducting routing platform for large-scale integration of quantum technologies\",\"authors\":\"C. Thomas, J. Michel, E. Deschaseaux, J. Charbonnier, R. Souil, E. Vermande, Alain Campo, T. Farjot, G. Rodriguez, G. Romano, Frederico Gustavo, B. Jadot, V. Thiney, Y. Thonnart, G. Billiot, T. Meunier, M. Vinet\",\"doi\":\"10.1088/2633-4356/ac88ae\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To reach large-scale quantum computing, three-dimensional integration of scalable qubit arrays and their control electronics in multi-chip assemblies is promising. Within these assemblies, the use of superconducting interconnections, as routing layers, offers interesting perspective in terms of (1) thermal management to protect the qubits from control electronics self-heating, (2) passive device performance with significant increase of quality factors and (3) density rise of low and high frequency signals thanks to minimal dispersion. We report on the fabrication, using 200 mm silicon wafer technologies, of a multi-layer routing platform designed for the hybridation of spin qubit and control electronics chips. A routing level couples the qubits and the control circuits through one layer of Al0.995Cu0.005 and superconducting layers of TiN, Nb or NbN, connected between them by W-based vias. Wafer-level parametric tests at 300 K validate the yield of these technologies while low temperature electrical measurements in cryostat are used to extract the superconducting properties of the routing layers. Preliminary low temperature radio-frequency characterizations of superconducting passive elements, embedded in these routing levels, are presented.\",\"PeriodicalId\":345750,\"journal\":{\"name\":\"Materials for Quantum Technology\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials for Quantum Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1088/2633-4356/ac88ae\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials for Quantum Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2633-4356/ac88ae","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了实现大规模量子计算,可扩展量子比特阵列及其控制电子元件在多芯片组件中的三维集成是有前途的。在这些组件中,使用超导互连作为路由层,在以下方面提供了有趣的观点:(1)热管理,以保护量子位免受控制电子自热的影响;(2)无源器件性能显著增加质量因素;(3)由于最小色散,低频和高频信号的密度上升。我们报告了使用200毫米硅片技术制造的多层路由平台,该平台设计用于自旋量子比特和控制电子芯片的混合。路由层通过一层Al0.995Cu0.005和TiN、Nb或NbN超导层将量子比特和控制电路耦合起来,并通过w基过孔将它们连接起来。300 K下的晶圆级参数测试验证了这些技术的产量,而低温恒温器中的低温电测量用于提取布线层的超导特性。初步低温射频特性的超导无源元件,嵌入在这些路由水平,提出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Superconducting routing platform for large-scale integration of quantum technologies
To reach large-scale quantum computing, three-dimensional integration of scalable qubit arrays and their control electronics in multi-chip assemblies is promising. Within these assemblies, the use of superconducting interconnections, as routing layers, offers interesting perspective in terms of (1) thermal management to protect the qubits from control electronics self-heating, (2) passive device performance with significant increase of quality factors and (3) density rise of low and high frequency signals thanks to minimal dispersion. We report on the fabrication, using 200 mm silicon wafer technologies, of a multi-layer routing platform designed for the hybridation of spin qubit and control electronics chips. A routing level couples the qubits and the control circuits through one layer of Al0.995Cu0.005 and superconducting layers of TiN, Nb or NbN, connected between them by W-based vias. Wafer-level parametric tests at 300 K validate the yield of these technologies while low temperature electrical measurements in cryostat are used to extract the superconducting properties of the routing layers. Preliminary low temperature radio-frequency characterizations of superconducting passive elements, embedded in these routing levels, are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nitrogen-vacancy centers in diamond: discovery of additional electronic states Fabrication of tips for scanning probe magnetometry by diamond growth GaAs-on-insulator ridge waveguide nanobeam cavities with integrated InAs quantum dots Quantum materials engineering by structured cavity vacuum fluctuations Structural formation yield of GeV centers from implanted Ge in diamond
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1