用统计分布模型分析软件演化过程

T. Tamai, Takako Nakatani
{"title":"用统计分布模型分析软件演化过程","authors":"T. Tamai, Takako Nakatani","doi":"10.1145/512035.512063","DOIUrl":null,"url":null,"abstract":"Size data of software systems are constantly collected but so far there have been no studies of applying statistical distribution models to analyze and interpret those data. In this paper, we show that the negative binomial distribution fits well to the distribution of size data such as the number of methods per class and number of lines of code per method and can be effectively used to trace software evolution processes.","PeriodicalId":321820,"journal":{"name":"International Workshop on Principles of Software Evolution","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Analysis of software evolution processes using statistical distribution Models\",\"authors\":\"T. Tamai, Takako Nakatani\",\"doi\":\"10.1145/512035.512063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Size data of software systems are constantly collected but so far there have been no studies of applying statistical distribution models to analyze and interpret those data. In this paper, we show that the negative binomial distribution fits well to the distribution of size data such as the number of methods per class and number of lines of code per method and can be effectively used to trace software evolution processes.\",\"PeriodicalId\":321820,\"journal\":{\"name\":\"International Workshop on Principles of Software Evolution\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Principles of Software Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/512035.512063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Principles of Software Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/512035.512063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

软件系统的规模数据是不断收集的,但目前还没有应用统计分布模型对这些数据进行分析和解释的研究。在本文中,我们证明了负二项分布很好地符合大小数据的分布,例如每个类的方法数量和每个方法的代码行数,并且可以有效地用于跟踪软件进化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Analysis of software evolution processes using statistical distribution Models
Size data of software systems are constantly collected but so far there have been no studies of applying statistical distribution models to analyze and interpret those data. In this paper, we show that the negative binomial distribution fits well to the distribution of size data such as the number of methods per class and number of lines of code per method and can be effectively used to trace software evolution processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applying lehman's laws to game evolution Enhancement of CRD-based clone tracking Identifying clone removal opportunities based on co-evolution analysis What can commit metadata tell us about design degradation? Tracking performance failures with rizel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1