X. Yuan, Liao Xiaoli, Liu Shilei, Shi Qinwen, Li Ke
{"title":"利用1-2g分析和多任务分类从RCT摘要中提取PICO元素","authors":"X. Yuan, Liao Xiaoli, Liu Shilei, Shi Qinwen, Li Ke","doi":"10.1145/3340037.3340043","DOIUrl":null,"url":null,"abstract":"The core of evidence-based medicine is to read and analyze numerous papers in the medical literature on a specific clinical problem and summarize the authoritative answers to that problem. Currently, to formulate a clear and focused clinical problem, the popular PICO framework is usually adopted, in which each clinical problem is considered to consist of four parts: patient/problem (P), intervention (I), comparison (C) and outcome (O). In this study, we compared several classification models that are commonly used in traditional machine learning. Next, we developed a multitask classification model based on a soft-margin SVM with a specialized feature engineering method that combines 1-2gram analysis with TF-IDF analysis. Finally, we trained and tested several generic models on an open-source data set from BioNLP 2018. The results show that the proposed multitask SVM classification model based on 1-2gram TF-IDF features exhibits the best performance among the tested models.","PeriodicalId":340774,"journal":{"name":"Proceedings of the 3rd International Conference on Medical and Health Informatics","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Extracting PICO Elements From RCT Abstracts Using 1-2gram Analysis And Multitask Classification\",\"authors\":\"X. Yuan, Liao Xiaoli, Liu Shilei, Shi Qinwen, Li Ke\",\"doi\":\"10.1145/3340037.3340043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The core of evidence-based medicine is to read and analyze numerous papers in the medical literature on a specific clinical problem and summarize the authoritative answers to that problem. Currently, to formulate a clear and focused clinical problem, the popular PICO framework is usually adopted, in which each clinical problem is considered to consist of four parts: patient/problem (P), intervention (I), comparison (C) and outcome (O). In this study, we compared several classification models that are commonly used in traditional machine learning. Next, we developed a multitask classification model based on a soft-margin SVM with a specialized feature engineering method that combines 1-2gram analysis with TF-IDF analysis. Finally, we trained and tested several generic models on an open-source data set from BioNLP 2018. The results show that the proposed multitask SVM classification model based on 1-2gram TF-IDF features exhibits the best performance among the tested models.\",\"PeriodicalId\":340774,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on Medical and Health Informatics\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on Medical and Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3340037.3340043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Medical and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340037.3340043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting PICO Elements From RCT Abstracts Using 1-2gram Analysis And Multitask Classification
The core of evidence-based medicine is to read and analyze numerous papers in the medical literature on a specific clinical problem and summarize the authoritative answers to that problem. Currently, to formulate a clear and focused clinical problem, the popular PICO framework is usually adopted, in which each clinical problem is considered to consist of four parts: patient/problem (P), intervention (I), comparison (C) and outcome (O). In this study, we compared several classification models that are commonly used in traditional machine learning. Next, we developed a multitask classification model based on a soft-margin SVM with a specialized feature engineering method that combines 1-2gram analysis with TF-IDF analysis. Finally, we trained and tested several generic models on an open-source data set from BioNLP 2018. The results show that the proposed multitask SVM classification model based on 1-2gram TF-IDF features exhibits the best performance among the tested models.