动态Takagi-Sugeno模糊模型辨识的新概念

C. Hametner, S. Jakubek
{"title":"动态Takagi-Sugeno模糊模型辨识的新概念","authors":"C. Hametner, S. Jakubek","doi":"10.1109/ICCIS.2006.252246","DOIUrl":null,"url":null,"abstract":"Takagi-Sugeno fuzzy models have proved to be a powerful tool for the identification of nonlinear dynamic systems. Recent publications have addressed the problems of local versus global accuracy and the identifiability and interpretability of local models as true linearisations. The latter issue particularly concerns off-equilibrium models. Well-established solution approaches involve techniques like regularisation and multi-objective optimisation. In view of a practical application of these models by inexperienced users this paper addresses the following issues: 1) unbiased estimation of local model parameters in the presence of input- and output noise. At the same time the dominance of the trend term in off-equilibrium models is balanced. 2) The concept of stationary constraints is introduced. They help to significantly improve the accuracy of equilibrium models during steady-state phases. A simulation model demonstrates the capabilities of the proposed concepts","PeriodicalId":296028,"journal":{"name":"2006 IEEE Conference on Cybernetics and Intelligent Systems","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"New Concepts for the Identification of Dynamic Takagi-Sugeno Fuzzy Models\",\"authors\":\"C. Hametner, S. Jakubek\",\"doi\":\"10.1109/ICCIS.2006.252246\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Takagi-Sugeno fuzzy models have proved to be a powerful tool for the identification of nonlinear dynamic systems. Recent publications have addressed the problems of local versus global accuracy and the identifiability and interpretability of local models as true linearisations. The latter issue particularly concerns off-equilibrium models. Well-established solution approaches involve techniques like regularisation and multi-objective optimisation. In view of a practical application of these models by inexperienced users this paper addresses the following issues: 1) unbiased estimation of local model parameters in the presence of input- and output noise. At the same time the dominance of the trend term in off-equilibrium models is balanced. 2) The concept of stationary constraints is introduced. They help to significantly improve the accuracy of equilibrium models during steady-state phases. A simulation model demonstrates the capabilities of the proposed concepts\",\"PeriodicalId\":296028,\"journal\":{\"name\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Conference on Cybernetics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIS.2006.252246\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Conference on Cybernetics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIS.2006.252246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

Takagi-Sugeno模糊模型已被证明是识别非线性动态系统的有力工具。最近的出版物已经解决了局部与全局精度的问题,以及作为真正线性化的局部模型的可识别性和可解释性。后一个问题特别涉及非均衡模型。成熟的解决方法包括正则化和多目标优化等技术。鉴于这些模型在经验不足的用户中的实际应用,本文解决了以下问题:1)在存在输入和输出噪声的情况下对局部模型参数的无偏估计。同时,在非均衡模型中趋势项的主导地位是平衡的。2)引入平稳约束的概念。它们有助于显著提高稳态阶段平衡模型的准确性。仿真模型演示了所提出概念的功能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
New Concepts for the Identification of Dynamic Takagi-Sugeno Fuzzy Models
Takagi-Sugeno fuzzy models have proved to be a powerful tool for the identification of nonlinear dynamic systems. Recent publications have addressed the problems of local versus global accuracy and the identifiability and interpretability of local models as true linearisations. The latter issue particularly concerns off-equilibrium models. Well-established solution approaches involve techniques like regularisation and multi-objective optimisation. In view of a practical application of these models by inexperienced users this paper addresses the following issues: 1) unbiased estimation of local model parameters in the presence of input- and output noise. At the same time the dominance of the trend term in off-equilibrium models is balanced. 2) The concept of stationary constraints is introduced. They help to significantly improve the accuracy of equilibrium models during steady-state phases. A simulation model demonstrates the capabilities of the proposed concepts
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-layer Control Strategy of Dynamics Control System of Vehicle A Fuzzy Multiple Critera Decision Making Method Gait Recognition Considering Directions of Walking Nonlinear Diffusion Driven by Local Features for Image Denoising Designing of an Adaptive Adcock Array and Reducing the Effects of Other Transmitters, Unwanted Reflections and Noise
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1