修正PDDL+问题的计划:理论和实践意义

Francesco Percassi, Enrico Scala, M. Vallati
{"title":"修正PDDL+问题的计划:理论和实践意义","authors":"Francesco Percassi, Enrico Scala, M. Vallati","doi":"10.1609/icaps.v33i1.27210","DOIUrl":null,"url":null,"abstract":"The plan, execution, and replan framework has proven to be extremely valuable in complex real-world applications, where the dynamics of the environment cannot be fully encoded in the domain model. However, this comes at the cost of regenerating plans from scratch, which can be expensive when expressive formalisms like PDDL+ are used. Given the complexity of generating PDDL+ plans, it would be ideal to reuse as much as possible of an existing plan, rather than generating a new one from scratch every time. To support more effective exploitation of the plan, execution, and replan framework in PDDL+, in this paper, we introduce the problem of discretized PDDL+ plan fixing, which allows one to fix existing plans according to some defined constraints. We demonstrate the theoretical implications of the introduced notion and introduce reformulations to address the problem using domain-independent planning engines. Our results show that such reformulations can outperform replanning from scratch and unlock planning engines to solve more problems with fine-grained discretizations.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fixing Plans for PDDL+ Problems: Theoretical and Practical Implications\",\"authors\":\"Francesco Percassi, Enrico Scala, M. Vallati\",\"doi\":\"10.1609/icaps.v33i1.27210\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plan, execution, and replan framework has proven to be extremely valuable in complex real-world applications, where the dynamics of the environment cannot be fully encoded in the domain model. However, this comes at the cost of regenerating plans from scratch, which can be expensive when expressive formalisms like PDDL+ are used. Given the complexity of generating PDDL+ plans, it would be ideal to reuse as much as possible of an existing plan, rather than generating a new one from scratch every time. To support more effective exploitation of the plan, execution, and replan framework in PDDL+, in this paper, we introduce the problem of discretized PDDL+ plan fixing, which allows one to fix existing plans according to some defined constraints. We demonstrate the theoretical implications of the introduced notion and introduce reformulations to address the problem using domain-independent planning engines. Our results show that such reformulations can outperform replanning from scratch and unlock planning engines to solve more problems with fine-grained discretizations.\",\"PeriodicalId\":239898,\"journal\":{\"name\":\"International Conference on Automated Planning and Scheduling\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Automated Planning and Scheduling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1609/icaps.v33i1.27210\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v33i1.27210","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

计划、执行和重新计划框架已被证明在复杂的实际应用程序中非常有价值,在这些应用程序中,环境的动态不能完全编码到域模型中。然而,这是以从头开始重新生成计划为代价的,当使用像PDDL+这样的表达形式时,这可能是昂贵的。考虑到生成PDDL+计划的复杂性,理想的做法是尽可能多地重用现有计划,而不是每次都从头生成一个新计划。为了支持更有效地利用PDDL+中的计划、执行和重新计划框架,本文引入了离散化PDDL+计划修复问题,该问题允许人们根据一些定义的约束来修复现有的计划。我们展示了引入的概念的理论含义,并引入了使用领域独立规划引擎来解决问题的重新表述。我们的研究结果表明,这种重新规划可以胜过从头开始的重新规划,并解锁规划引擎,以解决更多具有细粒度离散化的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fixing Plans for PDDL+ Problems: Theoretical and Practical Implications
The plan, execution, and replan framework has proven to be extremely valuable in complex real-world applications, where the dynamics of the environment cannot be fully encoded in the domain model. However, this comes at the cost of regenerating plans from scratch, which can be expensive when expressive formalisms like PDDL+ are used. Given the complexity of generating PDDL+ plans, it would be ideal to reuse as much as possible of an existing plan, rather than generating a new one from scratch every time. To support more effective exploitation of the plan, execution, and replan framework in PDDL+, in this paper, we introduce the problem of discretized PDDL+ plan fixing, which allows one to fix existing plans according to some defined constraints. We demonstrate the theoretical implications of the introduced notion and introduce reformulations to address the problem using domain-independent planning engines. Our results show that such reformulations can outperform replanning from scratch and unlock planning engines to solve more problems with fine-grained discretizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1