基于人工脉冲神经网络模型的表面肌电信号手部运动分类

Anand Kumar Mukhopadhyay, I. Chakrabarti, M. Sharad
{"title":"基于人工脉冲神经网络模型的表面肌电信号手部运动分类","authors":"Anand Kumar Mukhopadhyay, I. Chakrabarti, M. Sharad","doi":"10.1109/ICSENS.2018.8589757","DOIUrl":null,"url":null,"abstract":"Real-time classification of the myoelectric signal has applications in the field of neuro-rehabilitation systems such as prosthesis. The classifier which is a human-computer-interaction (HCI) controller should be ideally fast and computationally less intensive. In this work, we have done a simulation-based study to estimate the performance of a deep artificial/spiking neural network (ANN) model for classification. The model parameters are tuned for a subject to get a 93.33 % and 89.39 % classification accuracy using the ANN and SNN classifiers respectively. A comparison between the two classifiers is studied in terms of computational complexity, external noise effect and trained parameters approximation.","PeriodicalId":405874,"journal":{"name":"2018 IEEE SENSORS","volume":"R-32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Classification of Hand Movements by Surface Myoelectric Signal Using Artificial-Spiking Neural Network Model\",\"authors\":\"Anand Kumar Mukhopadhyay, I. Chakrabarti, M. Sharad\",\"doi\":\"10.1109/ICSENS.2018.8589757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real-time classification of the myoelectric signal has applications in the field of neuro-rehabilitation systems such as prosthesis. The classifier which is a human-computer-interaction (HCI) controller should be ideally fast and computationally less intensive. In this work, we have done a simulation-based study to estimate the performance of a deep artificial/spiking neural network (ANN) model for classification. The model parameters are tuned for a subject to get a 93.33 % and 89.39 % classification accuracy using the ANN and SNN classifiers respectively. A comparison between the two classifiers is studied in terms of computational complexity, external noise effect and trained parameters approximation.\",\"PeriodicalId\":405874,\"journal\":{\"name\":\"2018 IEEE SENSORS\",\"volume\":\"R-32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE SENSORS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSENS.2018.8589757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE SENSORS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSENS.2018.8589757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

肌电信号的实时分类在假肢等神经康复系统中有着广泛的应用。分类器作为一种人机交互(HCI)控制器,理想情况下应该是速度快,计算量少。在这项工作中,我们做了一个基于仿真的研究来估计深度人工/峰值神经网络(ANN)模型的分类性能。对一个主题的模型参数进行了调整,使用ANN和SNN分类器分别获得了93.33%和89.39%的分类准确率。从计算复杂度、外部噪声影响和训练参数逼近等方面对两种分类器进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of Hand Movements by Surface Myoelectric Signal Using Artificial-Spiking Neural Network Model
Real-time classification of the myoelectric signal has applications in the field of neuro-rehabilitation systems such as prosthesis. The classifier which is a human-computer-interaction (HCI) controller should be ideally fast and computationally less intensive. In this work, we have done a simulation-based study to estimate the performance of a deep artificial/spiking neural network (ANN) model for classification. The model parameters are tuned for a subject to get a 93.33 % and 89.39 % classification accuracy using the ANN and SNN classifiers respectively. A comparison between the two classifiers is studied in terms of computational complexity, external noise effect and trained parameters approximation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon Photonics Based On-Chip Cantilever Vibration Measurement A Smart Temperature Sensor and Controller for Bioelectronic Implants Analysing Effect of Different Parameters on Performance of Dodecyl Benzene Sulphonic Acid Doped Polyaniline Based Ammonia Gas Sensor Defect Control in MoO3 Nanostructures as Ethanol Sensor Separation, Sensing, and Metagenomic Analysis of Aerosol Particles Using MMD Sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1