利用振动辅助加工提高硬车削工艺性能的研究

Pranesh Dutta, G. Bartarya
{"title":"利用振动辅助加工提高硬车削工艺性能的研究","authors":"Pranesh Dutta, G. Bartarya","doi":"10.1177/25165984211008059","DOIUrl":null,"url":null,"abstract":"In hard turning, the cutting forces are large, which leads to tool wear and tensile nature of residual stresses. Vibration-assisted machining (VAM), where the tool is provided with a low amplitude vibration at significantly high frequency, might improve the process performance of hard turning in terms of cutting forces, residual stress, etc., as VAM helps in reduction of cutting forces and tool wear significantly. To improve the machining operation, a comparative study of VAM with conventional machining is undertaken to study and improve the hard turning performance. A two-dimensional (2D) finite element (FE) model is developed to understand the effect of process parameters better and to study the effect on machining performance by applying one-dimensional ultrasonic vibration to the tool. The model developed is validated with results from a previous work for continuous hard turning conditions. The effect of vibrations induced in cutting velocity direction is studied on the cutting forces and residual stresses induced on the machined workpiece. The ratio of cutting velocity to critical vibrating velocity is an important process parameter that affects the average cutting forces during hard turning using VAM. The nature of cutting force and temperature for a complete cycle of vibration is also studied. The simulation results establish that hard turning using VAM yields lower average cutting forces and more compressive residual stresses in comparison to conventional hard turning.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the improvement of process performance of hard turning using vibration-assisted machining\",\"authors\":\"Pranesh Dutta, G. Bartarya\",\"doi\":\"10.1177/25165984211008059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In hard turning, the cutting forces are large, which leads to tool wear and tensile nature of residual stresses. Vibration-assisted machining (VAM), where the tool is provided with a low amplitude vibration at significantly high frequency, might improve the process performance of hard turning in terms of cutting forces, residual stress, etc., as VAM helps in reduction of cutting forces and tool wear significantly. To improve the machining operation, a comparative study of VAM with conventional machining is undertaken to study and improve the hard turning performance. A two-dimensional (2D) finite element (FE) model is developed to understand the effect of process parameters better and to study the effect on machining performance by applying one-dimensional ultrasonic vibration to the tool. The model developed is validated with results from a previous work for continuous hard turning conditions. The effect of vibrations induced in cutting velocity direction is studied on the cutting forces and residual stresses induced on the machined workpiece. The ratio of cutting velocity to critical vibrating velocity is an important process parameter that affects the average cutting forces during hard turning using VAM. The nature of cutting force and temperature for a complete cycle of vibration is also studied. The simulation results establish that hard turning using VAM yields lower average cutting forces and more compressive residual stresses in comparison to conventional hard turning.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984211008059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984211008059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在硬车削中,切削力很大,导致刀具磨损和残余应力的拉伸性质。振动辅助加工(VAM),即刀具具有明显高频的低振幅振动,可以在切削力、残余应力等方面改善硬车削的工艺性能,因为VAM有助于显著降低切削力和刀具磨损。为了改进加工工艺,进行了VAM与常规加工的对比研究,以研究和提高硬车削性能。为了更好地理解工艺参数的影响,研究一维超声振动对刀具加工性能的影响,建立了二维有限元模型。在连续硬车削条件下,对所建立的模型进行了验证。研究了切削速度方向振动对切削力和工件残余应力的影响。切削速度与临界振动速度之比是影响VAM硬车削平均切削力的重要工艺参数。研究了一个完整振动周期内切削力和温度的变化规律。仿真结果表明,与常规硬车削相比,VAM硬车削产生更低的平均切削力和更大的残余压应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
On the improvement of process performance of hard turning using vibration-assisted machining
In hard turning, the cutting forces are large, which leads to tool wear and tensile nature of residual stresses. Vibration-assisted machining (VAM), where the tool is provided with a low amplitude vibration at significantly high frequency, might improve the process performance of hard turning in terms of cutting forces, residual stress, etc., as VAM helps in reduction of cutting forces and tool wear significantly. To improve the machining operation, a comparative study of VAM with conventional machining is undertaken to study and improve the hard turning performance. A two-dimensional (2D) finite element (FE) model is developed to understand the effect of process parameters better and to study the effect on machining performance by applying one-dimensional ultrasonic vibration to the tool. The model developed is validated with results from a previous work for continuous hard turning conditions. The effect of vibrations induced in cutting velocity direction is studied on the cutting forces and residual stresses induced on the machined workpiece. The ratio of cutting velocity to critical vibrating velocity is an important process parameter that affects the average cutting forces during hard turning using VAM. The nature of cutting force and temperature for a complete cycle of vibration is also studied. The simulation results establish that hard turning using VAM yields lower average cutting forces and more compressive residual stresses in comparison to conventional hard turning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive manufacturing in the COVID-19 pandemic: Equipment and challenges? Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy Surface modification using nanostructures and nanocoating to combat the spread of bacteria and viruses: Recent development
and challenges A review on applications of molecular dynamics in additive manufacturing A review on applications of molecular dynamics in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1