{"title":"一种基于MEMS技术的太赫兹波导滤波器","authors":"G. Shan, N. Zhang, Z. Yan, C. Shek","doi":"10.1109/IEEE-IWS.2019.8803867","DOIUrl":null,"url":null,"abstract":"This paper presents high performance 0.34THz waveguide filters based on MEMS technology. The relationship between fabrication error and filter performance was studied and a quantitative model is given. The fabrication geometrical tolerance can be controlled to be lower than 5% for iris structures (and ±5μm for resonant cavities). Our test results show a good agreement with simulation results when fabrication error is less than ~5 µm, the test result shows a performance of ~0.5dB insertion with ~5.29% relative bandwidth.","PeriodicalId":306297,"journal":{"name":"2019 IEEE MTT-S International Wireless Symposium (IWS)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Terahertz Waveguide Filter Based on MEMS Technology\",\"authors\":\"G. Shan, N. Zhang, Z. Yan, C. Shek\",\"doi\":\"10.1109/IEEE-IWS.2019.8803867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents high performance 0.34THz waveguide filters based on MEMS technology. The relationship between fabrication error and filter performance was studied and a quantitative model is given. The fabrication geometrical tolerance can be controlled to be lower than 5% for iris structures (and ±5μm for resonant cavities). Our test results show a good agreement with simulation results when fabrication error is less than ~5 µm, the test result shows a performance of ~0.5dB insertion with ~5.29% relative bandwidth.\",\"PeriodicalId\":306297,\"journal\":{\"name\":\"2019 IEEE MTT-S International Wireless Symposium (IWS)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE MTT-S International Wireless Symposium (IWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEEE-IWS.2019.8803867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE MTT-S International Wireless Symposium (IWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEE-IWS.2019.8803867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Terahertz Waveguide Filter Based on MEMS Technology
This paper presents high performance 0.34THz waveguide filters based on MEMS technology. The relationship between fabrication error and filter performance was studied and a quantitative model is given. The fabrication geometrical tolerance can be controlled to be lower than 5% for iris structures (and ±5μm for resonant cavities). Our test results show a good agreement with simulation results when fabrication error is less than ~5 µm, the test result shows a performance of ~0.5dB insertion with ~5.29% relative bandwidth.