Ji Young Park, Duck-Joong Kim, Sung Rak Kim, J. Baek, K. Sun, Sang Hoon Lee
{"title":"采用ph响应水凝胶微球作为驱动元件的微流体阀","authors":"Ji Young Park, Duck-Joong Kim, Sung Rak Kim, J. Baek, K. Sun, Sang Hoon Lee","doi":"10.1109/MMB.2006.251483","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new fabrication method of pH-responsive microfluidic valves and suggest the feasibility as a microminiature systems without peripheral devices. Conventionally, in-situ photopolymerization method has been employed to build the micro functional structure inside microfluidic channel. Here, we suggest a new method allowing the mass production of stimuli-responsive microsystem through the use of pre-made microstructure as actuating element like assembly of commercial products in the factory. We have massively fabricated pH-responsive microspheres that act as actuating component through the use of PDMS-based microfluidic apparatus and 'on the fly' photopolymerization method. By the incorporation of this microsphere into the microvalve during the fabrication process, we have produced the pH-responsive microfluidic valve in a simple way. The operation and the function of the fabricated microvalve were evaluated through the diverse experiments. The microvalve was successfully fabricated, and functioned well according to the pH change","PeriodicalId":170356,"journal":{"name":"2006 International Conference on Microtechnologies in Medicine and Biology","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Microfluidic Valve Employing the pH-Responsive Hydrogel Microsphere as an Actuating Element\",\"authors\":\"Ji Young Park, Duck-Joong Kim, Sung Rak Kim, J. Baek, K. Sun, Sang Hoon Lee\",\"doi\":\"10.1109/MMB.2006.251483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new fabrication method of pH-responsive microfluidic valves and suggest the feasibility as a microminiature systems without peripheral devices. Conventionally, in-situ photopolymerization method has been employed to build the micro functional structure inside microfluidic channel. Here, we suggest a new method allowing the mass production of stimuli-responsive microsystem through the use of pre-made microstructure as actuating element like assembly of commercial products in the factory. We have massively fabricated pH-responsive microspheres that act as actuating component through the use of PDMS-based microfluidic apparatus and 'on the fly' photopolymerization method. By the incorporation of this microsphere into the microvalve during the fabrication process, we have produced the pH-responsive microfluidic valve in a simple way. The operation and the function of the fabricated microvalve were evaluated through the diverse experiments. The microvalve was successfully fabricated, and functioned well according to the pH change\",\"PeriodicalId\":170356,\"journal\":{\"name\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"volume\":\"68 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 International Conference on Microtechnologies in Medicine and Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMB.2006.251483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 International Conference on Microtechnologies in Medicine and Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMB.2006.251483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Microfluidic Valve Employing the pH-Responsive Hydrogel Microsphere as an Actuating Element
In this paper, we propose a new fabrication method of pH-responsive microfluidic valves and suggest the feasibility as a microminiature systems without peripheral devices. Conventionally, in-situ photopolymerization method has been employed to build the micro functional structure inside microfluidic channel. Here, we suggest a new method allowing the mass production of stimuli-responsive microsystem through the use of pre-made microstructure as actuating element like assembly of commercial products in the factory. We have massively fabricated pH-responsive microspheres that act as actuating component through the use of PDMS-based microfluidic apparatus and 'on the fly' photopolymerization method. By the incorporation of this microsphere into the microvalve during the fabrication process, we have produced the pH-responsive microfluidic valve in a simple way. The operation and the function of the fabricated microvalve were evaluated through the diverse experiments. The microvalve was successfully fabricated, and functioned well according to the pH change