利用EM算法对CSC μ子进行检测

D. Primor, G. Mikenberg, H. Messer
{"title":"利用EM算法对CSC μ子进行检测","authors":"D. Primor, G. Mikenberg, H. Messer","doi":"10.1109/SAM.2008.4606896","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of parameter estimation for tracking charged particles. The ad hoc techniques commonly used in high energy physics may not be sufficient to perform tracking in the complex background environment of future experiments, and algorithms based on modern signal processing may give interesting results. This paper describes a specific parameter estimation problem of a muon detector used in the ATLAS experiment, where the use of the estimation maximization (EM) algorithm results in improved performance, as an example of the potential benefit of using statistical signal processing techniques in high energy physics.","PeriodicalId":422747,"journal":{"name":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The use of the EM algorithm for the CSC muon detection\",\"authors\":\"D. Primor, G. Mikenberg, H. Messer\",\"doi\":\"10.1109/SAM.2008.4606896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of parameter estimation for tracking charged particles. The ad hoc techniques commonly used in high energy physics may not be sufficient to perform tracking in the complex background environment of future experiments, and algorithms based on modern signal processing may give interesting results. This paper describes a specific parameter estimation problem of a muon detector used in the ATLAS experiment, where the use of the estimation maximization (EM) algorithm results in improved performance, as an example of the potential benefit of using statistical signal processing techniques in high energy physics.\",\"PeriodicalId\":422747,\"journal\":{\"name\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM.2008.4606896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 5th IEEE Sensor Array and Multichannel Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM.2008.4606896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了带电粒子跟踪的参数估计问题。高能物理中常用的特殊技术可能不足以在未来实验的复杂背景环境中进行跟踪,而基于现代信号处理的算法可能会给出有趣的结果。本文描述了ATLAS实验中使用的μ子探测器的一个具体参数估计问题,其中使用估计最大化(EM)算法可以提高性能,作为在高能物理中使用统计信号处理技术的潜在好处的一个例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The use of the EM algorithm for the CSC muon detection
This paper addresses the problem of parameter estimation for tracking charged particles. The ad hoc techniques commonly used in high energy physics may not be sufficient to perform tracking in the complex background environment of future experiments, and algorithms based on modern signal processing may give interesting results. This paper describes a specific parameter estimation problem of a muon detector used in the ATLAS experiment, where the use of the estimation maximization (EM) algorithm results in improved performance, as an example of the potential benefit of using statistical signal processing techniques in high energy physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A dual-linear predictor approach to blind source extraction for noisy mixtures Optimal combination of fourth order statistics for non-circular source separation Blind channel identification and signal recovery by confining a component of the observations into a convex-hull of minimum volume Power-aware distributed detection in IR-UWB sensor networks Linear least squares based acoustic source localization utilizing energy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1