提出了一种基于改进遗传算法的变内参数摄像机自标定方法

M. Merras, N. El Akkad, A. Saaidi, A. G. Nazih, K. Satori
{"title":"提出了一种基于改进遗传算法的变内参数摄像机自标定方法","authors":"M. Merras, N. El Akkad, A. Saaidi, A. G. Nazih, K. Satori","doi":"10.1109/SITA.2013.6560799","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new method of camera self-calibration with varying intrinsic parameters by an improved genetic algorithm. Firstly, the simplified Kruppa equation (the case of varying intrinsic parameters) defined by Hartley is translated into the optimized cost function. Secondly, the minimization of the cost function is calculated by an optimized modified genetic algorithm. Finally, the intrinsic parameters of the camera are obtained. Comparing to traditional optimization methods, the camera self-calibration with varying intrinsic parameters by this approach can avoid being trapped in a local minimum and converge quickly to the optimal solution without initial estimates of the camera parameters. Our study is performed on synthetic and real data to demonstrate the validity and performance of the presented approach. The results show that the proposed technique is both accurate and robust.","PeriodicalId":145244,"journal":{"name":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"A new method of camera self-calibration with varying intrinsic parameters using an improved genetic algorithm\",\"authors\":\"M. Merras, N. El Akkad, A. Saaidi, A. G. Nazih, K. Satori\",\"doi\":\"10.1109/SITA.2013.6560799\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new method of camera self-calibration with varying intrinsic parameters by an improved genetic algorithm. Firstly, the simplified Kruppa equation (the case of varying intrinsic parameters) defined by Hartley is translated into the optimized cost function. Secondly, the minimization of the cost function is calculated by an optimized modified genetic algorithm. Finally, the intrinsic parameters of the camera are obtained. Comparing to traditional optimization methods, the camera self-calibration with varying intrinsic parameters by this approach can avoid being trapped in a local minimum and converge quickly to the optimal solution without initial estimates of the camera parameters. Our study is performed on synthetic and real data to demonstrate the validity and performance of the presented approach. The results show that the proposed technique is both accurate and robust.\",\"PeriodicalId\":145244,\"journal\":{\"name\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SITA.2013.6560799\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 8th International Conference on Intelligent Systems: Theories and Applications (SITA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITA.2013.6560799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

本文提出了一种基于改进遗传算法的变内禀参数摄像机自标定方法。首先,将Hartley定义的简化Kruppa方程(变内参数情况)转化为优化后的成本函数。其次,利用一种优化的改进遗传算法计算成本函数的最小值;最后,得到了摄像机的固有参数。与传统的优化方法相比,该方法在改变相机固有参数的情况下进行自标定,避免了陷入局部极小值的困境,无需对相机参数进行初始估计即可快速收敛到最优解。我们在合成数据和真实数据上进行了研究,以证明所提出方法的有效性和性能。结果表明,该方法具有较好的鲁棒性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new method of camera self-calibration with varying intrinsic parameters using an improved genetic algorithm
In this paper, we present a new method of camera self-calibration with varying intrinsic parameters by an improved genetic algorithm. Firstly, the simplified Kruppa equation (the case of varying intrinsic parameters) defined by Hartley is translated into the optimized cost function. Secondly, the minimization of the cost function is calculated by an optimized modified genetic algorithm. Finally, the intrinsic parameters of the camera are obtained. Comparing to traditional optimization methods, the camera self-calibration with varying intrinsic parameters by this approach can avoid being trapped in a local minimum and converge quickly to the optimal solution without initial estimates of the camera parameters. Our study is performed on synthetic and real data to demonstrate the validity and performance of the presented approach. The results show that the proposed technique is both accurate and robust.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A rule-based simulation approach to scheduling problem in semiconductor photolithography process Hybrid network selection strategy by using M-AHP/E-TOPSIS for heterogeneous networks A semantic approach for automatic image annotation Result merging for meta-search engine Review of Web services description approaches
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1