能量感知无电池蓝牙低能量设备原型由环境光供电

A. Sultania, J. Famaey
{"title":"能量感知无电池蓝牙低能量设备原型由环境光供电","authors":"A. Sultania, J. Famaey","doi":"10.1145/3485730.3493357","DOIUrl":null,"url":null,"abstract":"Bluetooth Low Energy (BLE) is emerging as an Internet of Things (IoT) technology that effectively connects small devices and sensors. It can enable many smart building use cases such as automation and control, environmental condition monitoring, and indoor location services. The BLE mesh standard provides a friendship feature to support Low Power Nodes (LPNs). We demonstrate how these BLE LPNs can support communication (uplink, downlink, or bidirectional) when powered by ambient indoor light using a mini solar panel and a small capacitor for energy storage. Being batteryless, it can exhibit intermittent behaviour with periodic ON and OFF states. However, with the knowledge of the capacitor voltage, an energy-aware LPN can try to avoid the OFF state. It can delay the execution of upcoming tasks by switching to an SLEEP state (consuming minimum energy) and provide some time to recharge the capacitor. We consider an example use case of monitoring temperature and room occupancy. The mesh nodes in the network can send instructions (such as turn-on an LED or a buzzer) to the batteryless LPN that should be executed by it. We study the use-case with real experiments on the communication feasibility of an energy-aware BLE LPN in a network and characterize the capacitance behaviour by placing a 6 W light bulb at 120 cm from the solar panel.","PeriodicalId":356322,"journal":{"name":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-Aware Battery-Less Bluetooth Low Energy Device Prototype Powered By Ambient Light\",\"authors\":\"A. Sultania, J. Famaey\",\"doi\":\"10.1145/3485730.3493357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bluetooth Low Energy (BLE) is emerging as an Internet of Things (IoT) technology that effectively connects small devices and sensors. It can enable many smart building use cases such as automation and control, environmental condition monitoring, and indoor location services. The BLE mesh standard provides a friendship feature to support Low Power Nodes (LPNs). We demonstrate how these BLE LPNs can support communication (uplink, downlink, or bidirectional) when powered by ambient indoor light using a mini solar panel and a small capacitor for energy storage. Being batteryless, it can exhibit intermittent behaviour with periodic ON and OFF states. However, with the knowledge of the capacitor voltage, an energy-aware LPN can try to avoid the OFF state. It can delay the execution of upcoming tasks by switching to an SLEEP state (consuming minimum energy) and provide some time to recharge the capacitor. We consider an example use case of monitoring temperature and room occupancy. The mesh nodes in the network can send instructions (such as turn-on an LED or a buzzer) to the batteryless LPN that should be executed by it. We study the use-case with real experiments on the communication feasibility of an energy-aware BLE LPN in a network and characterize the capacitance behaviour by placing a 6 W light bulb at 120 cm from the solar panel.\",\"PeriodicalId\":356322,\"journal\":{\"name\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3485730.3493357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3485730.3493357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

低功耗蓝牙(BLE)是一种有效连接小型设备和传感器的物联网(IoT)技术。它可以实现许多智能建筑用例,如自动化和控制、环境状况监测和室内定位服务。BLE mesh标准提供友谊特性以支持低功率节点(lpn)。我们演示了这些BLE lpn如何在使用小型太阳能电池板和用于储能的小型电容器的室内环境光供电时支持通信(上行、下行或双向)。由于没有电池,它可以表现出周期性的ON和OFF状态的间歇性行为。然而,有了电容电压的知识,能量感知的LPN可以尝试避免OFF状态。它可以通过切换到SLEEP状态(消耗最小能量)来延迟即将执行的任务,并提供一些时间给电容器充电。我们考虑一个监测温度和房间占用情况的示例用例。网络中的mesh节点可以向无电池LPN发送指令(如打开LED或蜂鸣器),这些指令应该由它执行。我们通过实际实验研究了网络中能量感知BLE LPN的通信可行性,并通过在距离太阳能电池板120厘米处放置6 W灯泡来表征电容行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-Aware Battery-Less Bluetooth Low Energy Device Prototype Powered By Ambient Light
Bluetooth Low Energy (BLE) is emerging as an Internet of Things (IoT) technology that effectively connects small devices and sensors. It can enable many smart building use cases such as automation and control, environmental condition monitoring, and indoor location services. The BLE mesh standard provides a friendship feature to support Low Power Nodes (LPNs). We demonstrate how these BLE LPNs can support communication (uplink, downlink, or bidirectional) when powered by ambient indoor light using a mini solar panel and a small capacitor for energy storage. Being batteryless, it can exhibit intermittent behaviour with periodic ON and OFF states. However, with the knowledge of the capacitor voltage, an energy-aware LPN can try to avoid the OFF state. It can delay the execution of upcoming tasks by switching to an SLEEP state (consuming minimum energy) and provide some time to recharge the capacitor. We consider an example use case of monitoring temperature and room occupancy. The mesh nodes in the network can send instructions (such as turn-on an LED or a buzzer) to the batteryless LPN that should be executed by it. We study the use-case with real experiments on the communication feasibility of an energy-aware BLE LPN in a network and characterize the capacitance behaviour by placing a 6 W light bulb at 120 cm from the solar panel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Adaptive Video Transmission Strategy Based on Ising Machine Wavoice: A Noise-resistant Multi-modal Speech Recognition System Fusing mmWave and Audio Signals Experimental Scalability Study of Consortium Blockchains with BFT Consensus for IoT Automotive Use Case MoRe-Fi: Motion-robust and Fine-grained Respiration Monitoring via Deep-Learning UWB Radar FedMask
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1