呼吸速率光学测量无线供电装置

Yu-Chieh Chen, J. Tsan, Wen-Yen Lin
{"title":"呼吸速率光学测量无线供电装置","authors":"Yu-Chieh Chen, J. Tsan, Wen-Yen Lin","doi":"10.1109/MeMeA52024.2021.9478773","DOIUrl":null,"url":null,"abstract":"The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wirelessly Powered Device for Optical Measurement of Respiration Rate\",\"authors\":\"Yu-Chieh Chen, J. Tsan, Wen-Yen Lin\",\"doi\":\"10.1109/MeMeA52024.2021.9478773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

睡眠患者呼吸频率的准确测量需要患者处于舒适的状态。目前的测量系统通常需要患者穿紧身衣,因为传感器必须靠近身体才能获得高质量的测量结果。然而,长时间穿紧身衣很不舒服,尤其是在睡觉的时候。此外,目前的系统受到电池寿命短的影响,这是夜间监测过程的主要问题;现有的电池设计不能集成到智能服装中,智能服装必须是防水的,以便在洗衣时保护电子元件。为了解决这些问题,本研究开发了一种无线供电光学呼吸测量模块(wireless- orm),该模块可与棉质服装集成,实现呼吸速率的光学非接触式测量。该模块是无线供电的,因此不需要电池,并允许无限供电。无线orm也可以很容易地覆盖一层防水膜。我们制作并测试了一个无线orm的原型,体积为197 × 20 × 3毫米,重量为2.8克。该传感器被确定在距离身体40毫米的距离内工作,这意味着即使穿着厚厚的冬衣也可以测量呼吸速率。这种无线orm还可以在距离基站70厘米的地方无线接收电力。由于其体积小,无线orm可以用塑料包裹防水,使其能够用于智能服装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wirelessly Powered Device for Optical Measurement of Respiration Rate
The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ML algorithms for the assessment of prescribed physical exercises Measuring the Effect of Rhythmic Auditory Stimuli on Parkinsonian Gait in Challenging Settings A preliminary study on the dynamic characterization of a MEMS microgripper for biomedical applications Gait Parameters of Elderly Subjects in Single-task and Dual-task with three different MIMU set-ups The use of cognitive training and tDCS for the treatment of an high potential subject: a case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1