{"title":"呼吸速率光学测量无线供电装置","authors":"Yu-Chieh Chen, J. Tsan, Wen-Yen Lin","doi":"10.1109/MeMeA52024.2021.9478773","DOIUrl":null,"url":null,"abstract":"The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wirelessly Powered Device for Optical Measurement of Respiration Rate\",\"authors\":\"Yu-Chieh Chen, J. Tsan, Wen-Yen Lin\",\"doi\":\"10.1109/MeMeA52024.2021.9478773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.\",\"PeriodicalId\":429222,\"journal\":{\"name\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MeMeA52024.2021.9478773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Wirelessly Powered Device for Optical Measurement of Respiration Rate
The accurate measurement of respiration rate in sleeping patients requires the patients to be in a comfortable state. Current measurement systems usually require patients to wear tights because the sensors must be close to the body to enable the acquisition of high-quality measurements. However, tights are uncomfortable when worn for a long period, especially during sleep. Moreover, current systems are marred by poor battery life, which is a major problem for overnight monitoring processes; existing battery designs cannot be integrated into smart clothing, which must be waterproof to protect electronic components during laundry.To solve these problems, this study developed a wireless power– supplied optical respiratory measurement module (wireless-ORM), which can be integrated with cotton clothing for the optical, noncontact measurement of respiratory rate. This module is powered wirelessly, which eliminates the need for a battery and allows for an indefinite power supply. The wireless-ORM can also be easily covered with a waterproof membrane for waterproofing. We fabricated and tested a prototype of the wireless-ORM measuring 197 × 20 × 3 mm3 in volume and 2.8 g in weight. The sensor was determined to function at distances up to 40 mm from the body, meaning that respiration rate could be measured even with thick winter clothes. The wireless-ORM could also receive power wirelessly up to 70 cm from a base station. Due to its small size, the wireless-ORM can be wrapped in plastic for waterproofing to enable its use in smart clothing.