载流子弛豫路径对量子点激光器双态运行的影响

G. Sokolovskii, V. Dudelev, E. D. Kolykhalova, K. Soboleva, A. G. Deryagin, I. Novikov, M. V. Maximov, A. E. Zhukov, V. Ustinov, V. Kuchinskii, W. Sibbett, E. Rafailov, E. Viktorov, T. Erneux
{"title":"载流子弛豫路径对量子点激光器双态运行的影响","authors":"G. Sokolovskii, V. Dudelev, E. D. Kolykhalova, K. Soboleva, A. G. Deryagin, I. Novikov, M. V. Maximov, A. E. Zhukov, V. Ustinov, V. Kuchinskii, W. Sibbett, E. Rafailov, E. Viktorov, T. Erneux","doi":"10.1117/12.2078746","DOIUrl":null,"url":null,"abstract":"We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse.","PeriodicalId":432115,"journal":{"name":"Photonics West - Optoelectronic Materials and Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of the carrier relaxation paths on two-state operation in quantum dot lasers\",\"authors\":\"G. Sokolovskii, V. Dudelev, E. D. Kolykhalova, K. Soboleva, A. G. Deryagin, I. Novikov, M. V. Maximov, A. E. Zhukov, V. Ustinov, V. Kuchinskii, W. Sibbett, E. Rafailov, E. Viktorov, T. Erneux\",\"doi\":\"10.1117/12.2078746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse.\",\"PeriodicalId\":432115,\"journal\":{\"name\":\"Photonics West - Optoelectronic Materials and Devices\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics West - Optoelectronic Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2078746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics West - Optoelectronic Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2078746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了在30ns脉冲泵浦条件下同时工作于地(GS)和激发态(ES)的InGaAs QD激光器,并根据泵浦电流和载流子弛豫路径区分了三种工作状态。电流的增加导致ES强度的增加,而在低泵浦范围内导致GS强度(或饱和度)的降低,这是典型的级联式通路。在大电流范围内,GS和ES的强度都稳步增加,这证明了直接捕获途径的优势。这些范围的弛豫振荡不明显。对于中间电流,这两种路径的相互作用导致了衰减的大幅度弛豫振荡,并且弛豫振荡频率与脉冲初始值有明显的偏差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of the carrier relaxation paths on two-state operation in quantum dot lasers
We study InGaAs QD laser operating simultaneously at ground (GS) and excited (ES) states under 30ns pulsed-pumping and distinguish three regimes of operation depending on the pump current and the carrier relaxation pathways. An increased current leads to an increase in ES intensity and to a decrease in GS intensity (or saturation) for low pump range, as typical for the cascade-like pathway. Both the GS and ES intensities are steadily increased for high current ranges, which prove the dominance of the direct capture pathway. The relaxation oscillations are not pronounced for these ranges. For the mediate currents, the interplay between the both pathways leads to the damped large amplitude relaxation oscillations with significant deviation of the relaxation oscillation frequency from the initial value during the pulse.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and performance of multicore fiber optimized towards communications and sensing applications Gain equalization of FM-EDFA by optimizing ring doping and mode content of the pump with a genetic algorithm Novel method of generation of linear frequency modulation optical waveforms with swept range of over 200 GHz for lidar systems Flexible waveguide enabled single-channel terahertz endoscopic system InGaN LEDs prepared on β-Ga2O3 (-201) substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1