eap驱动软夹持器的两阶段优化设计

W. Zhang, Jonathan Hong, Saad Ahmed, Z. Ounaies, M. Frecker
{"title":"eap驱动软夹持器的两阶段优化设计","authors":"W. Zhang, Jonathan Hong, Saad Ahmed, Z. Ounaies, M. Frecker","doi":"10.1115/detc2019-98169","DOIUrl":null,"url":null,"abstract":"\n An increasing range of engineering applications require soft grippers, which use compliant mechanisms instead of stiff components to achieve grasping action, have high conformability and exert gentle contact with target objects compared to traditional grippers. In this study, a three-fingered gripper is first designed based on a notched self-folding mechanism actuated using an electrostrictive PVDF-based terpolymer. Then the design optimization problem is formulated, where the design objectives are to maximize the free deflection Δfree and the blocked force Fb. A computationally efficient two-stage design optimization procedure is proposed and successfully applied in the gripper design. NSGA-II is adopted as the optimization algorithm for its capacity to deal with multi-objective optimization problems and to find the global optima with high design variables and large design domains. In stage one, computationally less expensive analytical models are developed based on Bernoulli-Euler beam theory and Castigliano’s theorem to calculate Δfree and Fb. Utility function is applied to determine the best design in the last generation of stage one. In stage two, 3D FEA models are developed, using the dimensions determined by the best design from stage one, to investigate effect of the shape of segment surfaces on the design objectives. Overall, the proposed two-stage optimization procedure is successfully applied in the actuator design and shows the potential to solve a wide range of structural optimization problems.","PeriodicalId":211780,"journal":{"name":"Volume 5B: 43rd Mechanisms and Robotics Conference","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Two-Stage Optimization Procedure for the Design of an EAP-Actuated Soft Gripper\",\"authors\":\"W. Zhang, Jonathan Hong, Saad Ahmed, Z. Ounaies, M. Frecker\",\"doi\":\"10.1115/detc2019-98169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n An increasing range of engineering applications require soft grippers, which use compliant mechanisms instead of stiff components to achieve grasping action, have high conformability and exert gentle contact with target objects compared to traditional grippers. In this study, a three-fingered gripper is first designed based on a notched self-folding mechanism actuated using an electrostrictive PVDF-based terpolymer. Then the design optimization problem is formulated, where the design objectives are to maximize the free deflection Δfree and the blocked force Fb. A computationally efficient two-stage design optimization procedure is proposed and successfully applied in the gripper design. NSGA-II is adopted as the optimization algorithm for its capacity to deal with multi-objective optimization problems and to find the global optima with high design variables and large design domains. In stage one, computationally less expensive analytical models are developed based on Bernoulli-Euler beam theory and Castigliano’s theorem to calculate Δfree and Fb. Utility function is applied to determine the best design in the last generation of stage one. In stage two, 3D FEA models are developed, using the dimensions determined by the best design from stage one, to investigate effect of the shape of segment surfaces on the design objectives. Overall, the proposed two-stage optimization procedure is successfully applied in the actuator design and shows the potential to solve a wide range of structural optimization problems.\",\"PeriodicalId\":211780,\"journal\":{\"name\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5B: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-98169\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5B: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

越来越多的工程应用需要软夹持器,它使用柔性机构而不是刚性部件来实现抓取动作,与传统夹持器相比,具有高顺应性并与目标物体进行温和接触。在这项研究中,首先设计了一个基于缺口自折叠机构的三指夹持器,该机构由电致伸缩pvdf基三元共聚物驱动。然后制定设计优化问题,其中设计目标为最大自由挠度Δfree和最大阻挡力Fb。提出了一种计算效率高的两阶段优化设计方法,并成功地应用于夹持器的设计中。采用NSGA-II作为优化算法,具有处理多目标优化问题的能力,能够找到设计变量大、设计域大的全局最优解。在第一阶段,基于伯努利-欧拉梁理论和卡斯蒂利亚诺定理建立计算成本较低的分析模型来计算Δfree和Fb。应用效用函数来确定最后一代第一阶段的最佳设计。在第二阶段,利用第一阶段最佳设计确定的尺寸,建立三维有限元模型,研究管片表面形状对设计目标的影响。总体而言,所提出的两阶段优化程序成功地应用于执行器设计,并显示出解决广泛的结构优化问题的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Two-Stage Optimization Procedure for the Design of an EAP-Actuated Soft Gripper
An increasing range of engineering applications require soft grippers, which use compliant mechanisms instead of stiff components to achieve grasping action, have high conformability and exert gentle contact with target objects compared to traditional grippers. In this study, a three-fingered gripper is first designed based on a notched self-folding mechanism actuated using an electrostrictive PVDF-based terpolymer. Then the design optimization problem is formulated, where the design objectives are to maximize the free deflection Δfree and the blocked force Fb. A computationally efficient two-stage design optimization procedure is proposed and successfully applied in the gripper design. NSGA-II is adopted as the optimization algorithm for its capacity to deal with multi-objective optimization problems and to find the global optima with high design variables and large design domains. In stage one, computationally less expensive analytical models are developed based on Bernoulli-Euler beam theory and Castigliano’s theorem to calculate Δfree and Fb. Utility function is applied to determine the best design in the last generation of stage one. In stage two, 3D FEA models are developed, using the dimensions determined by the best design from stage one, to investigate effect of the shape of segment surfaces on the design objectives. Overall, the proposed two-stage optimization procedure is successfully applied in the actuator design and shows the potential to solve a wide range of structural optimization problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing and Manufacturing a Super Excellent and Ultra-Cheap Energy Absorber by Origami Engineering Exploiting the Asymmetric Energy Barrier in Multi-Stable Origami to Enable Mechanical Diode Behavior in Compression Thick Folding Through Regionally-Sandwiched Compliant Sheets Synthesis of Stephenson III Timed Curve Generators Using a Probabilistic Continuation Method Deflection Maps of Elastic Catenary Cable-Driven Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1